IRJ(D1HC)F?()LJQ

SEMICONDUCTORS

3501 ED BLUESTEIN BLVD AUSTIN TEXAS 78721

MC6800

8-BIT MICROPROCESSING UNIT (MPU)

The MC6800 is a monolithic 8-bit microprocessor forming the central
control function for Motorola’s M8800 family. Compatible with TTL, the
MCB800, as with all M6800 system parts, requires only one + 5.0-volt
power supply, and no external TTL devices for bus interface.

The MC6800 is capable of addressing 64K bytes of memory with its
16-bit address lines. The 8-bit data bus is bidirectional as well as three-
state, making direct memory addressing and multiprocessing applica-
tions realizable.

® 8-Bit Parallel Processing

® Bidirectional Data Bus

® 16-Bit Address Bus — 64K Bytes of Addressing
® 72 Instructions — Variable Length

® Seven Addressing Modes — Direct, Relative, Immediate, Indexed,
Extended, Implied and Accumulator

Variable Length Stack
Vectored Restart
Maskable {nterrupt Vector

Separate Non-Maskable Interrupt — internal Registers Saved in
Stack

Six Internal Registers — Two Accumulators, Index Register,
Program Counter, Stack Pointer and Condition Code Register
Direct Memory Addressing {(DMA) and Multiple Processor
Capability

Simplified Clocking Characteristics

Clock Rates as High as 2.0 MHz

Simple Bus Interface Without TTL

Halt and Single Instruction Execution Capability

ORDERING INFORMATION

Package Type Frequency (MHz) Temperature Order Number
Ceramic 1.0 0°C to 70°C MCe800L
L Suffix 1.0 ~40°C to 85°C MC6800CL
1.5 0°C to 70°C MCB8A00L
1.5 —40°C to 86°C MCB8A00CL
2.0 0°C 10 70°C MCB8BCOL
Cerdip 1.0 0°C to 70°C MCB800S
S Suffix 1.0 —40°C to 85°C MCB800CS
1.5 0°C to 70°C MCB68A00S
1.5 —40°C to 85°C MCB8A00CS
2.0 0°C to 70°C MC68B00S
Plastic 1.0 0°C to 70°C MC6800P
P Suffix 1.0 —40°C to 85°C MC6800CP
1.5 0°C to 70°C MCB68A00P
1.5 —40°C to 85°C MC68A00CP
2.0 0°C to 70°C MC68800P

MOS

(N-CHANNEL, SILICON-GATE,
DEPLETION LOAD)

MICROPROCESSOR

S SUFFIX
CERDIP PACKAGE
CASE 734

P SUFFIX
PLASTIC PACKAGE
CASE7N

L SUFFIX
CERAMIC PACKAGE
CASE 715

PIN ASSIGNMENT

Vssjt @ w0 [1RESET
HALT[] 2 39[TsC
#1103 sshIn.C.
1RG4 371 ¢2
vMA[5 36 [1DBE
NMiQs 35[N.C.
BAll 7 34 [R/W
veell s 33{1D0
Acfle 320101
Atfjo 31{IDp2
A201 30{1D3
A3{]12 29[1D4
A4ll3 28[JD5
A5{14 271106
Aslls 26 {]D7
A7016 26[1A15
Asl]17 24[1A14
aglls 23[1A13
at1of19 22[A12
A1Qd20 21fVss

©MOTOROLA INC., 1984 DS9471-R2

MAXIMUM RATINGS

Rating Symbol Value Unit |
Supply Voltage Ve —-0.310 +7.0 A
Input Voltage Vin -03t0 +7.0 \ This device contains circuitry to protect the
Operating Temperature Range T to TH inputs against damage due to high static
MCB800, MCE8A00, MC68B00 Ta 0to +70 °C voltages or electrical fields; however, it is ad-
MCB800C, MCB8A00C -40to +8b vised that normal precautions be taken to
Storage Temperature Range Tstg —B5t0 +160 | °C avoid application of any voltage higher than

maximum-rated voltages to this high-
impedance circuit. Reliability of operation is
enhanced if unused inputs are tied to an ap-

THERMAL RESISTANCE propriate logic voltage (e.g., either Vgg or

Rating Symbol Value Unit Veo).
Plastic Package 100
Cerdip Package AT 60 °C/W
Ceramic Package 50
POWER CONSIDERATIONS
The average chip-junction temperature, T, in °C can be obtained from:
Ty=Ta+(PD*bJA) (1

Where:
Ta = Ambient Temperature, °C
8 jA=Package Thermal Resistance, Junction-to-Ambient, °C/W
PD=PINT+PPORT
PINT=IcCcx VCe, Watts — Chip Internal Power
PpORT=Port Power Dissipation, Watts — User Determined

For most applications PpPORT<P|NT and can be neglected. PPORT may become significant if the device is configured to
drive Darlington bases or sink LED loads.

An approximate relationship between Pp and T (if PPQRT is neglected) is:

Pp=K+(Ty+273°C) (2)
Solving equations 1 and 2 for K gives:
K=Pp® (TA+273°C)+ 6 A ® Pp2 (3)

Where K is a constant pertaining to the particular part. K can be determined from equation 3 by measuring Pp (at equilibrium)
for a known T a. Using this value of K the values of Pp and T j can be obtained by solving equations (1) and (2) iteratively for any
value of Ta.

DC ELECTRICAL CHARACTERISTICS (Ve =5.0 Vde, +5%, Vgg=0, Ta=TL to TH unless otherwise noted)

Characteristic - Symbol Min Typ Max Unit
input High Voltage Logic VIH Vgg+2.0 — vee v
$1,62| VIHC Vee—0.6 - Vee+0.3
Input Low Voltage Logic VL Vgg—-0.3 - Vgg+0.8 Y
o1, 62 ViLe Vgg—03 — Vgs+0.4
input Leakage Current
(Vihn=0105.25V, Voc=Max) Logic lin — 1.0 25 rA
(Vihr=01t05.25V, Vcc=0V 10 5.256 V) 1, 92 - — 100
Hi-Z input Leakage Current DO-D7 | — 2.0 10 A
(Vin=0.4102.4V, Voc =Max) AD-A15, R/W iz - - 100 #
Output High Voltage
(ILoad= —205 uA, Vo= Min) __Dbo-D7 v Vgg+24] — - Vv
U oadg= — 145 A, Vcc=Min) AQ-A15, R/W, VMA OH Vgs+2.4 - —~
Ul pad= — 100 A, Vcc = Min) BA Vgs+24] - -
Output Low Voltage (I} gad= 1.6 mA, V= Min) VoL - — Vgs+0.4 \
internal Power Dissipation (Measured at To=T|) PINT - 0.5 1.0 W
Capacitance
(Vin=0, TA=25°C, f=1.0 MHz) 1 - 25 35
¢2 Cin - 45 70 pF
DO-D7 ' - 10 125
Logic inputs - 6.5 10
AQ-A15, R/W,VMA | Cqut — — 12 pF

MOTOROLA Semiconductor Products Inc.
2

CLOCK TIMING (Vcc=5.0V, +5%, Vgg=0, TaA=T{ to Ty unless otherwise noted)

Characteristic Symbol Min Typ Max Unit
Frequency of Operation MCB800 0.1 - 1.0
MCB8A00 f 0.1 - 1.5 MHz
MCE8B00 0.1 - 2.0
Cycle Time (Figure 1) MC6800 1.000 - 10
MCB8A00 teye 0.666 — 10 us
MC68B00 0.500 — 10
Clock Pulse Width 1, 2 — MCB800 400 - 9500
(Measured at Vcc—0.6 V) @1, 92 — MCBBADD | PWyH 230 — 9500 ns
1, $2 — MCB8BO0 180 - 9500
Total ¢1and ¢2 Up Time MC6800 900 — —
MC6E8A00 tut 600 — - ns
MCB8B00 440 — —
Rise and Fall Time (Measured between Vgg+0.4 and Vcc—0.6) tr, tf — - 100 ns
Delay Time or Clock Separation (Figure 1)
{Measured at Voy=Vgg+0.6 V@t,=1f=< 100 ns) 1d 0 — 9100 ns
(Measured at Voy=Vgg+ 1.0 V@1, =1f=<35 ns) 0 - 9100
FIGURE 1 — CLOCK TIMING WAVEFORM
| |
ViIHC "
2 Vov jj
ViLc !
Tor —i PWg l‘7 tht
NOTES:
1. Voltage levels shown are Vi 0.4, V=24 V, unless otherwise specified.
2. Measurement points shown are 0.8 V and 2.0 V, unless otherwise noted.
READ/WRITE TIMING (Reference Figures 2 through 6, 8, 9, 11, 12 and 13}
. MC6800 MC68A00 MC68B00 .
Characteristic Symbol Min | Typ | Max | Min | Typ | Max | Min | Typ | Max Unit
Address Delay
C=90 pF tAD - — 270 - — 180 — - 150 | ns
C=30pF - - | 250 | - - 1656 | — — 135
Peripheral Read Access Time
tart):c= tut— (tAD+tIDSR} tacc 605 | — — 400 — | — |20 —~ — | ns
Data Setup Time (Read) {DSR 100 - — 60 — - 40 — - ns
Input Data Hoid Time tH 10 — — 10 - — 10 | — - ns
Output Data Hold Time tH 10 | 25 — 10 25 - 10 25 — ns
Address Hold Time {Address, R/W, VMA) tAH 30 50 — 30 B0 - 30 50 - ns
Enable High Time for DBE Input tEH 450 — - 280 — - 220 - - ns
Data Delay Time (Write) tDDW - - 2% | - - 1200 | — — | 180 | ns
Processor Controls
Processor Control Setup Time tpcs 200 — — 140 | — — 110 | — _
Processor Control Rise and Fall Time tpCr. tPCE - - 00 | — - 100 | — - 100
Bus Available Delay 1BA — — | 250 | — - | 185 | — - 1135 ns
Hi-Z Enable tTSE 0 - 40 0 - 40 0 - 40
Hi-Z Delay tTSD — | = |20 - | = |20 | - | - | 220
Data Bus Enable Down Time During ¢1 Up Time tDBE B0 — - 120 | — - 75 - -
Data Bus Enable Rise and Fall Times tDREr 'DBEf | — - 25 - - 25 - - 25

@ MOTOROLA Semiconductor Products Inc.
3

®1

P2

R/W

Address
From MPU

VMA

Data

From Memory
or Peripherals

Z

1

¢2

FIGURE 2 — READ DATA FROM MEMORY OR PERIPHERALS

Start of Cycle

l—
Z VIHC \
—_ 104V 04V
—_— — 1, ;
VIHC
= 0.4V
2.4V TAD
—1™1 *—tAH
24V K\\\ 2.0
0.4 VDA 0.8
tAD
- m N
- ety
taAD tacc DS R~
20V
Data Valid
08V A

\\\\\\\‘ Data Not Valid

FIGURE 3 — WRITE IN MEMORY OR PERIPHERALS

— Start of Cycle

teye

VIHC
0.4V

tr

——'AD»—-ﬂ

R/W
0.4 V OO

PN
] tAH
Address 24 Vv
From MPU 0.4 V.
lwt——tAD ——ad
Y RS
VMA
tAD
[DBE tEH
20V
DBE 0.8V Z
~— 'DBEf, —| ~—'DBEr tH
fo—
Data 2'4 \4 I
From MPU PR Data Valid
~—tDDW —=f

\\\\\\“ Data Not Valid

NOTES:

1. Voltage levels shown are V| 0.4, VH=2.4 V, unless otherwise specified.
2. Measurement points shown are 0.8 V and 2.0 V, unless otherwise noted.

@ MOTOROLA Semiconductor Products Inc.
4

DELAY TIME (ns)

FIGURE 4 — TYPICAL DATA BUS OUTPUT DELAY
versus CAPACITIVE LOADING (Tppw)

B I =208 uA max @ 24 V
FlpL=16mA max @04V
500 vee =50V
i Ta=25°C
400
300 -
e
200 —
/’I/
100 —=1
CL inctudes stray capacit‘ance
0 0 100 200 300 400 500 600

CL, LOAD CAPACITANCE {pF)

OELAY TIME {ns)

FIGURE 6 — TYPICAL READ/WRITE, VMA, AND ADDRESS

OUTPUT DELAY versus CAPACITIVE LOADIN

G (TaDp)

800 I 1 =145 s max @ 2.4 V

FlgL=1.6 mA max@ 0.4 V

| Vpe=5.0V
800 Iy yZ 25%C
400
300 vMA

Address, R/W
200 —
— ——
T
100 =]
CL includes stray capatitance
DU 100 200 300 400 500 600

Cy, LOAD CAPACITANCE (pF)

FIGURE 6 — BUS TIMING TEST LOADS

Vce
R =22 k$2

MMD6150
or Equiv.

Test Point

MMD 7000
ar Equiv,

C =130 pF for DO-D7, E
= 90 pF for AD-A15, R/W, and VMA
(Except tapo)
= 30 pF for AD-A15, R/W, and VMA
{(tap2 only)
= 30 pF for BA
R=11.7 k{2 for DO-D7
= 16.5 k&2 for AO-A15, R/W, and VMA
=24 k) for BA

@ MOTOROLA

Semiconductor Products Inc.

TEST CONDITIONS

The dynamic test load for the Data Bus is
130 pF and one standard TTL load as shown.
The Address, R/W, and VMA outputs are tested
under two conditions to allow optimum opera-
tion in both buffered and unbuffered systems,
The resistor (R) is chosen to insure specified
load currents during Vo measurement.

Notice that the Data Bus lines, the Address
lines, the Interrupt Request line, and the DBE
line are all specified and tested to guarantee
0.4 V of dynamic noise immunity at both
1 and "'Q”’ logic levels.

FIGURE 7 — EXPANDED BLOCK DIAGRAM

A15 A14 A13 A2 A1l A0 A9 A8 A7 A6 A5 A4 A3 Az Al AD
25 24 23 22 20 19 18 17 16 15 14 13 ‘ITZ 1" 10 9t
Output Output
Buffers Buffers
Clock, ¢1 33—
Clock, ¢2 37 —
RESET 40— Program Program
Non-Maskable Interrupt 5 ——pmd Counter H Counter |
HALT ~ 2—®1 |neryuction
Interrupt Request 4 —— Decode Stack Stack
and Pointer 4 Pointer |
Three-State Control 39 ——# Control
Data Bus Enable 36 —— Index Index
Bus Available 7 - Register H Register L
Valid Memory Address 5 -
Read/Write, R/W 34 ~d— Accumulator
A
Instruction Accumulator
Register B
Condition
Code
Register
Data
Buffer ALU

EEEEEEE

2% 27 28 29 30 AN 32 33
p7 ©e D5 D4 D3 D2 DV DO

Vee=Pin 8
Vgg=Pins 1, 21

@ MOTOROLA Semiconductor Products Inc.
6

MPU SIGNAL DESCRIPTION

Proper operation of the MPU requires that certain control
and timing signals be provided to accomplish specific func-
tions and that other signal lines be monitored to determine
the state of the processor.

Clocks Phase One and Phase Two (¢1, ¢2) — Two pins
are used for a two-phase non-overlapping clock that runs at
the V¢ voltage level.

Figure 1 shows the microprocessor clocks. The high level
is specified at ViHC and the low level is specified at ViLC.
The allowable clock frequency is specified by f (frequency).
The minimum ¢1 and ¢2 high level pulse widths are specified
by PWgH (pulse width high time!). To guarantee the required
access time for the peripherals, the clock up time, tyy, is
specified. Clock separation, tg, is measured at a maximum
voltage of Vv (overlap voltage). This allows for a multitude
of clock variations at the system frequency rate.

Address Bus {A0-A15) — Sixteen pins are used for the ad-
dress bus. The outputs are three-state bus drivers capable of
driving one standard TTL load and 80 pF. When the outputis
turned off, it is essentially an open circuit. This permits the
MPU to be used in DMA applications. Putting TSC in its high
state forces the Address bus to go into the three-state mode.

Data Bus (D0-D7) — Eight pins are used for the data bus.
It is bidirectional, transferring data to and from the memory
and peripheral devices. !t also has three-state output buffers
capable of driving one standard TTL load and 130 pF. Data
Bus is placed in the three-state mode when DBE is low.

Data Bus Enabie (DBE) — This level sensitive input is the
three-state control signal for the MPU data bus and will
enable the bus drivers when in the high state. This input is
TTL compatible; however in normal operation, it would be
driven by the phase two clock. During an MPU read cycle,
the data bus drivers will be disabled internally. When it is
desired that another device controf the data bus, such as in
Direct Memory Access (DMA) applications, DBE should be
held low.

If additional data setup or hold time is required on an MPU
write, the DBE down time can be decreased, as shown in
Figure 3 (DBE+#¢2). The minimum down time for DBE is
tDBE as shown. By skewing DBE with respect to E, data
setup or hold time can be increased.

Bus Available (BA) — The Bus Available signal will nor-
mally be in the low state; when activated, it will go to the
high state indicating that the microprocessor has stopped
and that the address bus is available. This will occur if the
HALT line is in the low state or the processor is in the WAIT
state as a result of the execution of a WAIT instruction. At
such time, all three-state output drivers will go to their off
state and other outputs to their normally inactive ievel. The
processor is removed from the WAIT state by the occurrence
of a maskable (mask bit | =0) or nonmaskable interrupt. This
output is capable of driving one standard TTL load and
30 pF. If TSC is in the high state, Bus Available will be low.

Read/Write (R/W) — This TTL compatible output signals
the peripherals and memory devices wether the MPU is in a

MOTOROLA Semiconductor Products Inc.

7

Read (high) or Write (low) state. The normal standby state of
this signal is Read (high}. Three-State Control going high wili
turn Read/Write to the off (high impedance) state. Also,
when the processor is halted, it will be in the off state. This
output is capable of driving one standard TTL load and
90 pF.

RESET — The RESET input is used to reset and start the
MPU from a power down condition resulting from a power
failure or initial start-up of the processor. This level sensitive
input can also be used to reinitialize the machine at any time
after start-up.

If a high level is detected in this input, this will signai the
MPU 1o begin the reset sequence. During the reset se-
quence, the contents of the last two locations (FFFE, FFFF)
in memory will be loaded into the Program Counter to point
to the beginning of the reset routine. During the reset
routine, the interrupt mask bit is set and must be cleared
under program control before the MPU can be interrupted by
IRQ. While RESET is low {assuming a minimum of 8 clock
cycles have occurred) the MPU output signals will be in the
following states: VMA=low, BA=low, Data Bus= high im-
pedance, R/W = high (read state), and the Address Bus will
contain the reset address FFFE. Figure 8 illustrates a power
up sequence using the RESET control line. After the power
supply reaches 4.75 V, a minimum of eight clock cycles are
required for the processor to stabilize in preparation for
restarting. During these eight cycles, VMA will be in an in-
determinate state so any devices that are enabled by YMA
which could accept a false write during this time {such as
battery-backed RAM) must be disabled until VMA is forced
low after eight cycles. RESET can go high asynchronously
with the system clock any time after the eighth cycle.

RESET timing is shown in Figure 8. The maximum rise and
fall transition times are specified by tpcr and tpcy. If RESET
is high at tpcs (processor control setup time), as shown in
Figure 8, in any given cycle then the restart sequence will
begin on the next cycle as shown. The RESET control line
may also be used to reinitialize the MPU system at any time
during its operation. This is accomplished by pulsing RESET
low for the duration of a minimum of three complete ¢2
cycles. The RESET pulse can be completely asynchronous
with the MPU system clock and will be recognized during ¢2
if setup time tpCs is met.

Interrupt Request (IRQ) — This level sensitive input re-
quests that an interrupt sequence be generated within the
machine. The processor wilt wait until it completes the cur-
rent instruction that is being executed before it recognizes
the request. At that time, if the interrupt mask bit in the Con-
dition Code Register is not set, the machine will begin an in-
terrupt sequence. The Index Register, Program Counter, Ac-
cumulators, and Condition Code Register are stored away on
the stack. Next, the MPU will respond to the interrupt re-
quest by setting the interrupt mask bit high so that no further
interrupts may occur. At the end of the cycle, a 16-bit ad-
dress will be loaded that points to a vectoring address which
is located in memory locations FFF8 and FFF9. An address
loaded at these locations causes the MPU to branch to an in-
terrupt routine in memory. Interrupt timing is shown in
Figure 9.

)

8

"0U| S}9NP0Id 10}aNPUodWeS VW ITOHOLOW

FIGURE 8 — RESET TIMING

n+ 1|n + 2

| Cycle
| #1

l#s\#e‘w‘#s‘#g\n

n + 3

n+ 4

n+5; ’m+1|m+2|m+3|

Power On J’ 4~ —{ {f—
Switch
Power 525 v {f

{L
Supply fajs Y R "
t
—»{ e TPCS

le— tPCS

RESET - ;__I

tpCr

pCt

PR A A G S
FFFE FFFE FFFE FFFF New PC

R/W AITITIITATATRAVWAVWAY ‘.\\\‘

m
Yj:D(J

vma T MSmm—”___/

oate. 5us IV ARSI X X XX XX ;L__X__XJLX:

PC 8-15 PC 0-7 First

Instruction

ST Y

{{—
1)
m = Iindeterminate
FIGURE 9 — INTERRUPT TIMING
Cycle
#1 #2 #3 #4 =5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15

@2

XX XXX XXX

X X X X

Address
Bus X

Next Inst SP(n) SP(n-1) SP(n-2) SP(n-3) SP(n-4) SP(n-5}) SP(n-6) SP(n-7) FFF8 FFF9 New PC
JRQ or \ Fetch Address Address Address
NMI
—.{"—T
Interrupt PCS J
Mask
omn o T X X XX X XXX XX XX
inst (x) PCO-7 PC8-15 XO0-7 XB8-16 ACCA ACCB CCR New PC 8-15 New PC 0-7, First Inst of

" [T \

Address Address Interrupt Routine

Va

The HALT line must be in the high state for interrupts to
be serviced. Interrupts will be latched internally while HALT
is low.

The IRQ has a high-impedance pullup device internal to
the chip; however, a 3 kQ external resistor to V¢ should be
used for wire-OR and optimum control of interrupts.

Non-Maskable Interrupt (NMI) and Wait for Interrupt
(WAI) — The MC6800Q is capable of handling two types of in-
terrupts: maskable (IRQ) as described earlier, and_non-
maskable {NMD which is an edge sensitive input. IRQ is
maskable by the interrupt mask in the condition code register
while NMI is not maskable. The handling of these interrupts
by the MPU is the same except that each has its own vector
address. The behavior of the MPU when interrupted is
shown in Figure 9 which details the MPU response to an in-
terrupt while the MPU is executing the control program. The
interrupt shown could be either IRG or NMT and can be asyn-
chronous with respect to ¢2. The interrupt is shown going
low at time tpCs in cycle #1 which precedes the first cycle of
an instruction (OP code fetch). This instruction is not ex-
ecuted but instead the Program Counter (PC), Index
Register (IX), Accumulators (ACCX), and the Condition
Code Register (CCR) are pushed onto the stack.

The Interrupt Mask bit is set to prevent further interrupts.
The address of the interrupt service routine is then fetched
from FFFC, FFFD for an NMl interrupt and from FFF8, FFF9
for an TRQ interrupt. Upon compiletion of the interrupt ser-
vice routine, the execution of RTI will pull the PC, I1X, ACCX,
and CCR off the stack; the Interrupt Mask bit is restored to
its condition prior to Interrupts (see Figure 10).

Figure 11 is a similar interrupt sequence, except in this
case, @ WAIT instruction has been executed in preparation
for the interrupt. This technique speeds up the MPU’s
response to the interrupt because the stacking of the PC, IX,
ACCX, and the CCR is already done. While the MPU is
waiting for the interrupt, Bus Available will go high in-
dicating the following states of the control lines: VMA is low,
and the Address Bus, R/W and Data Bus are all in the high
impedance state. After the interrupt occurs, it is serviced as
previously described.

A 3-10 k@ external resistor to V¢ should be used for wire-
OR and optimum control of interrupts.

MEMORY MAP FOR INTERRUPT VECTORS

Vector Description
MS LS
FFFE FFFF Reset
FFFC FFFD Non-Maskable Interrupt
FFFA FFFB Software Interrupt
FFF8 FFF9 Interrupt Request

Refer to Figure 10 for program flow for Interrupts.

Three-State Control (TSC) — When the level sensitive
Three-State Control (TSC) line is a logic "“1”, the Address
Bus and the R/W line are placed in a high-impedance state.
VMA and BA are forced low when TSC=""1" to prevent
false reads or writes on any device enabied by VMA. it is
necessary to delay program execution while TSC is held
high. This is done by insuring that no transitions of ¢1 (or ¢2)
occur during this period. (Logic levels of the clocks are irrele-
vant so long as they do not change). Since the MPU is a
dynamic device, the ¢1 clock can be stopped for a maximum

@ MOTOROLA Semiconductor Products Inc.

9

time PWgH without destroying data within the MPU. TSC
then can be used in a short Direct Memory Access (DMA)
application.

Figure 12 shows the effect of TSC on the MPU. TSC must
have its transitions at tTSE (three-state enable) while holding
¢1 high and ¢2 low as shown. The Address Bus and R/W
line will reach the high-impedance state at tTgp (three-state
delay), with VMA being forced low. in this example, the
Data Bus is also in the high-impedance state while ¢2 is be-
ing held low since DBE=¢2. At this point in time, a DMA
transfer could occur on cycles #3 and #4. When TSC is
returned low, the MPU Address and R/W lines return to the
bus. Because it is too Iate in cycle £#5 to access memory, this
cycle is dead and used for synchronization. Program execu-
tion resumes in cycle #6.

Valid Memory Address {(VMA} — This output indicates to
peripheral devices that there is a valid address on the address
bus. In normal operation, this signal should be utilized for
enabling peripheral interfaces such as the PIA and ACIA.
This signal is not three-state. One standard TTL load and
90 pF may be directly driven by this active high signal.

HALT — When this level sensitive input is in the jow state,
all activity in the machine will be halted. This input is level
sensitive.

The HALT line provides an input to the MPU 1o allow con-
trol of program execution by an outside source. If HALT is
high, the MPU will execute the instructions; if it is low, the
MPU will go to a haited or idle mode. A response signal, Bus
Available (BA) provides an indication of the current MPU
status. When BA is low, the MPU is in the process of ex-
ecuting the control program; if BA is high, the MPU has
halted and all internal activity has stopped.

When BA is high, the Address Bus, Data Bus, and R/W
line will be in a high-impedance state, effectively removing
the MPU from the system bus. VMA is forced low so that the
floating system bus will not activate any device on the bus
that is enabled by VMA.

While the MPU is halted, all program activity is stopped,
and if either an NMI or IRQ interrupt occurs, it will be latched
into the MPU and acted on as soon as the MPU is taken out
of the halted mode. If a RESET command occurs while the
MPU is halted, the following states occur: VMA=low,
BA=low, Data Bus=high impedance, R/W=high (read
state), and the Address Bus will contain address FFFE as
long as RESET is low. As soon as the RESET line goes high,
the MPU will go to locations FFFE and FFFF for the address
of the reset routine.

Figure 13 shows the timing relationships involved when
halting the MPU. The instruction illustrated is a one byte, 2
cycle instruction such as CLRA. When HALT goes low, the
MPU will halt after completing execution of the current in-
struction. The transition of HALT must occur tpcs before
the trailing edge of ¢1 of the last cycle of an instruction
{point A of Figure 13). HALT must not go low any time later
than the minmum tpCs specified.

The fetch of the OP code by the MPU is the first cycle of
the instruction. If HALT had not been low at Point A but
went low during ¢2 of that cycle, .the MPU would have
halted after completion of the following instruction. BA will
go high by time tgA {bus available delay time) after the iast
instruction cycle. At this point in time, VMA is low and R/W,
Address Bus, and the Data Bus are in the high-impedance
state.

To debug programs it is advantageous to step through
programs instruction by instruction. To do this, HALT must
be brought high for one MPU cycle and then returned low as
shown at point B of Figure 13. Again, the transitions of
HALT must occur tpcs before the trailing edge of ¢1. BA
will go low at tgA after the leading edge of the next ¢1, in-
dicating that the Address Bus, Data Bus, VMA and R/W

lines are back on the bus. A single byte, 2 cycle instruction
such as LSR is used for this example also. During the first cy-
cle, the instruction Y is fetched from address M+ 1. BA
returns high at tga on the last cycle of the instruction in-
dicating the MPU is off the bus. If instruction Y had been
three cycles, the width of the BA low time would have been
increased by one cycle.

FIGURE 10 — MPU FLOWCHART

P

I TEMP—~1
RESET]
Next Inst
1o 1
0-—BA

]

Vector—= PC
FFFE

1

ITMP — |

I

PC, X, A, B, CC

Stack

Notes:

MOTOROLA Semiconductor Products Inc.
10

WAI

0—BA ‘-—b-
1
1—= ITMP,
11—
] Condition Code Register
Vector — PC |1|1|Hl||lelv|<ﬂ
NMI FFCA
SV FFFA ITEMP" 1-Bit
IRQ FFF8 Buffer Register

Reset is recognized at any position in the flowchart.

Instructions which affect the |-Bit act upon a one-bit buffer register,
“ITMP.” This has the effect of delaying any CLEARING of the I-Bit one
clock time. Setting the I-Bit, however, is not delayed.

See Tables 6-11 for details of Instruction Execution.

W)

L

‘0U| S}oNPOId 10}oNPUOWES VW TOMOLOW

FIGURE 11 — WAIT INSTRUCTION TIMING

Cycle
#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 ‘ n n+1 n+2 n+3 n+4 n+5
62 LﬂJ
New PC
Add Address
ress \ P 4
B T X XX XX X___ X X X___ > f ___X___X X
Instruction SP(n) SP(n-1) SP(n-2) SP(n-3) SP(n-4) SP(n-5}) SP(n-6) SP(n7) FFF8 FFF9
— {$ e
R/W / L
VMA
\ {
__{r /
Interrupt
Mask P ¢ / First Inst
- ", of Interrupt
IRQ or (2 \ Routine
NMI
—»] |etpcs Y
V4
Data Bus A X A A A X X X XD f— < X X X X
Wait PC 0-7 PC 8-15 1 0-7 1 8-15 ACCA ACCB CCR New PC 8-15 New PC 0-7
Inst ’__[Address Address
BA l
Note: Midrange waveform indicates —»| |e—Tgp

high impedance state.

FIGURE 12 — THREE-STATE CONTROL TIMING

Cycle
#1 l #2 | #3 [4 [=5 | =6 ’ =7 =8 =g |
System |
1
I‘—‘_.; PW¢>H max __—___>{
MPU $1

la— tTSD tTSD —

e X XX X O
R XD a XX X X_
e XX XX
o X O X X X
p2=0se [] | I S O I

Tsc l! |

——| js—1TSE ITSE —o! fett—

FIGURE 13 — HALT AND SINGLE INSTRUCTION EXECUTION FOR SYSTEM DEBUG

Last Cycle
of Currgnt Instruction | Instruction
Instruction Fetch Execute
BA
o 1 A e = O e
- tpCs tpcs ™ ™ tpcs f—]
¢21JllllL__ll_;,Jl,|lllJlll
. =~ ’. tpes I tper “" [~ - ‘ A
R T _ 4 AW N
BA 2
A __1 / —f \ [
P G © m— 4 (am—
v~ X XY > { -~ X ___o—
Fetch Execute
Ql‘fress Addr M > {f —aaar w1 X o—
Bus @ D " inst
X Y

Note: Midrange waveform indicates
high impedance state.

MPU REGISTERS

The MPU has three 16-bit registers and three 8-bit
registers available for use by the programmer (Figure 14).

Program Counter — The program counter is a two byte
{16 bits) register that points to the current program address.

Stack Pointer — The stack ponter is a two byte register
that contains the address of the next available location in an
external push-down/pop-up stack. This stack is normally a
random access Read/Write memory that may have any loca-
tion {address) that is convenient. In those applications that
require storage of information in the stack when power is
lost, the stack must be nonvolatile.

Index Register — The index register is a two byte register
that is used to store data or a sixteen bit memory address for
the Indexed mode of memory addressing.

Accumulators — The MPU contains two 8-bit ac-
cumulators that are used to hold operands and results from
an arithmetic logic unit (ALU).

Condition Code Register — The condition code register in-
dicates the results of an Arithmetic Logic Unit operation:
Negative (N), Zero {Z), Overflow (V), Carry from bit 7 (C),
and half carry from bit 3 (H). These bits of the Condition
Code Register are used as testable conditions for the condi-
tional branch instructions. Bit 4 is the interrupt mask bit (I}.
The unused bits of the Condition Code Register (b6 and b7)
are ones.

FIGURE 14 — PROGRAMMING MODEL OF
THE MICROPROCESSING UNIT

ACCA

Accumulator A

7

15

[0}

ACCB | Accumulator B

o
IX Index Register
15 9]
PC Program Counter
15 o}
SP Stack Pointer
7 o]
1l1lul1Inl zivie Condition Code

Register

12

MOTOROLA Semiconductor Products Inc.

L Carry (From Bit 7)

Overflow

Zero
Negative
Interrupt

Half Carry (From Bit 3)

MPU INSTRUCTION SET

The MCB800 instructions are described in detail in the
MB800 Programming Manual. This Section will provide a
brief introduction and discuss their use in developing
MCB800 control programs. The MCB800 has a set of 72 dif-
ferent executable source instructions. Included are binary
and decimal arithmetic, logical, shift, rotate, load, store,
conditional or unconditional branch, interrupt and stack
manipulation instructions.

Each of the 72 executable instructions of the source
language assembles into 1 to 3 bytes of machine code. The
number of bytes depends on the particular instruction and
on the addressing mode. {The addressing modes which are
available for use with the various executive instructions are
discussed later.)

The coding of the first (or only) byte corresponding to an
executable instruction is sufficient to identify the instruction
and the addressing mode. The hexadecimal equivalents of
the binary codes, which result from the translation of the 72
instructions in all valid modes of addressing, are shown in
Table 1. There are 197 valid machine codes, 59 of the 256
possible codes being unassigned.

When an instruction translates into two or three bytes of
code, the second byte, or the second and third bytes con-
tain(s) an operand, an address, or information from which an
address is obtained during execution.

Microprocessor instructions are often divided into three
general classifications: {1) memory reference, so called
because they operate on specific memory locations; (2}
operating instructions that function without needing a
memory reference; (3) I/O instructions for transferring data
between the microprocessor and peripheral devices.

in many instances, the MC6800 performs the same opera-
tion on both its internal accumulators and the external
memory locations. In addition, the MCB800 interface
adapters {P1A and ACIA) aliow the MPU to treat peripheral
devices exactly like other memory locations, hence, no I/O
instructions as such are required. Because of these features,
other classifications are more suitable for introducing the
MCB800’'s instruction set: (1) Accumulator and memory
operations; {2) Program control operations; (3) Condition
Code Register operations.

TABLE 1 — HEXADECIMAL VALUES OF MACHINE CODES

00 ¥ 40 NEG A 80 SuB A IMM
01 NOP 41 - 81 CMP A MM
02 * 42 : 82 SBC A MM
03 ‘ 43 COM A 83 -

04 ‘ 44 LSR A 84 AND A IMM
05 : 45 * 85 BIT A IMM
06 TAP 46 ROR A 86 LDA A IMM
07 TPA 47 ASR A 87 *

08 INX 48 ASL A 88 EOR A MM
09 DEX 49 ROL A 89 ADC A IMM
0A CLV 4A DEC A 8A ORA A IMM
0B SEV 4B - 8B ADD A IMM
oC CLC 4C INC A 8C CPX A IMM
0D SEC 4D TST A 8D BSR REL
OE Cul 4E 8E LDS MM
OF SEil 4F CLR A 8F *

10 SBA 50 NEG B 90 SuB A DIR
1 CBA 51 i 91 CcMP A OIR
12 * 52 i 92 SBC A DIR
13 * 53 COM B 93 ‘

14 N 54 LSR B 94 AND A DIR
15 N 55 " 95 81T A DIR
16 TAB 56 ROR B 96 LDA A DIR
17 TBA 57 ASR B 97 STA A DIR
18 N 58 ASL B 98 EC A DIR
19 DAA 59 ROL B g¢ ADC A DIR
1A 7 5A DEC B SA ORA A DIR
1B ABA 1= 98 ADD A DIR
ic - s5C INC B 3C CPX DIR
D " 5D TST 8 9D -

1E - 5E -~ 9E LDS DIR
1F * 5F CLR B 9F STS DIR
20 BRA REL | 80 NEG IND | AD SUB A IND
21 * 61 4 Al CMP A IND
22 BHI REL | 62 : A2 SBC A IND
23 BLS REL | 63 coM IND A3

24 BCC REL | 64 LS8R IND [A4 AND A IND
25 BCS REL { 65 : A5 BIT A IND
26 BNE REL | 66 ROR IND [A8 LDA A IND
27 BEQ REL | 67 ASR IND | A7 STA A IND
28 BVC REL { 88 ASL IND [A8 EOR A IND
29 BVS REL | 69 ROL IND | A9 ADC A IND
2A BPL REL{ 6A DEC IND [AA ORA A IND
2B BMI REL| 6B * AB ADD A IND
2C BGE REL | 6C INC IND |AC CPX IND
2D BLT REL| 6D TST IND |AD JSR IND
2E BGT REL | 6E JMP IND | AE LDS IND
2F 8LE REL | 6F CLR IND | AF STS IND
30 TSX 70 NEG EXT|BO SuB A EXT
31 ‘NS 71 * B1 CMP A EXT
32 PUL A 72 " B2 SBC A EXT
33 PUL B 73 com EXT{B3 -

34 DES 74 LSR EXT|B4 AND A EXT
35 TXS 75 * B5 BIT A EXT
36 PSH A 76 ROR EXT|B6 LDA A EXT
37 PSH B 77 ASR EXT|B7 STA A EXT
38 ¥ 78 ASL EX7T | B8 EOR A EXT
38 RTS 79 ROL EXT|B3 ADC A EXT
3A 7A DEC EXT|BA ORA A EXT
3B RTI 7B - BB ADD A EXT
3 - 7C INC EXT{BC CPX EXT
3 - 7D TST. EXTI{BD JSR EXT
3E WA 7E JMP EXT[BE LDS EXT
3F Swi 7F CLR EXT|BF STS EXT

SuUB B MM

CMP B IMM

SBC B IMM

AND B8 IMM

BIT 8 MM

':DA B MM Notes: 1. Addressing Modes:

EOR B MM A = Accumulator A
ADC 8 IMM B = Accumulator B
ORA B IMM REL = Relative
f\DD 8 IMM IND = Indexed
X IMM = Immediate
LDX IMM DR Direct
suB B DIR i indi R
omP B DIR 2. Unassigned. code indicated by .
SBC B DIR

AND B DIR

BIT B DIR

LDA B DiR

STA B DIR

EOR B DIR

ADC B DiR

ORA B DIR

ADD B DIR

LDX DIR

STX DIR

suB 5] IND

CMP B IND

SBC B IND

AND B IND

BIT B IND

LDA B IND

STA B IND

EOR B IND

ADC B IND

ORA B IND

ADD B IND

LDX IND

STX IND

suB B EXT

CMpP B EXT

SBC B EXT

AND B EXT

BIT B EXT

LDA B EXT

STA B EXT

EOR B EXT

ADC B EXT

ORA B EXT

ADD B EXT

LDX EXT

STX EXT

@ MOTOROLA

Semiconductor Products Inc.

13

ADDRESSING MODES BOOLEAN/ARITHMETIC DPERATIDN COND. CODE REG.
IMMED DIRECT INDEX EXTND IMPLIED (Al register labels 5[4]3]2]|1]D
DPERATIONS MNEMONIC| OP ~ =[0p ~ =|op ~ =|op ~ =|op ~ = refer o contents) HpYvzve
Add ADDA 88 2198 3 2|AB 5 2(BB 4 3 A+rm—A IR CARREARR R
ADDB B 2 2(bB 3 2|EB 5 2|FB 4 3 B+M-+B tlefs|tit]s
Add Acmltrs ABA B 2 1 A+B—A e ¥t
Add with Carry ADCA 89 2 2|99 3 2|A3 5 2({8BY 4 3 A+M+C A LI R
ADCB C9 2 2|09 3 2]E3 5 2|F3 4 3 B+M+C—B Tleft|t]|2]2
And ANDA 84 2 2194 3 2{Ad 5 2Z2iB4 & 3 ArM-+A ole|t|l[R|®
ANDB Ca 2 2{D4 3 2]€4 5 Z!F4 4 3 B-M-B ojolt|l[R|®
Bit Test BITA 85 2 2798 3 2{A5 5 2|8 4 3 Am ejo{l|lR| e
BITB €5 2 2|(D5 3 2|{E5 5 2|F5 4 3 B-M ole|l|l[R]®
Clear CLR 6F 7 2]7F b6 3 00—+M ®|® |RIS|R(R
CLRA aF 2 1 00— A ®|®|RISIR(R
CLRB 5F 2 1 00->B e|®|RIS|IR(R
Compare CMPA 81 2 2|19 3 2(A1 5 2|[B1 4 3 A-M elolf ity
CMP8 ch 2 2(DVY 3 2{€EY 5 Z|F1 4 3 B-M ele |1} 1’3
Compare Acmlitrs cBA 1 2 1 A-B . 0\]3 it
. Complement, 1's com 63 7 2073 6 3 M-wm e'eiiillR s
COMA 43 2 1 A-A . JIYRS
coms 53 2 1| B-8 e o 1llR|S
Complement, 2's NEG 66 7 2[7 & 3 00~ M-M erelt DD
(Negate) NEGA 40 2 1 | 00-A—A sie | D@
NEGB 50 2 1 |00-B-B L ARRRR O)]
Decimal Adjust, A DAA 19 2 1 Converts Binary Add. of BCD Characters | @|® K] ©)
into BCO Format
Decrement DEC 6A 7 2|7A 6 3 M-1-M oo (lidle®
DECA 4A 2 1 A-t-—A ole|l tide®
DECB 5A 2 1 B-1-8 ool (lid]e
Exclusive OR EORA 88 2 2{98 3 2|A8 5 2/8B8 4 3 ADM - A ei®|liliR|®
EORB Cg 2 2|b8 3 2|&8 5 2Z|FB 4 3 B®OW -8 eio|l(t R|®
increment INC 6C 7 2(7C & 3 M1 M olo(1(1[®)e
INCA 4C 2 1 | AxT A elell|1®)e
INCB 5C 2 1§ B+y1-38 slef1[1®)e
Load Acmitr LDAA 86 2 29 3 2;A6 5 2|BE 4 3 WNoA e|o|t|tiRle®
LDAB C6 2 2|D6 3 2|E6 5 2|F6 4 3 7 -8 ole|l(l[R|e
Or, Inclusive ORAA BA 2 2|9 3 2|AA 5 2(BA 4 3 CA+E M- A ool (l|R|e®
ORAB | CA 2 2|DA 3 2|EA 5 2fFA 4 3 RV EY: o|e|t|t|R]e
Push Data PSHA 3% 4 1 A—Mgp, SP-1-+8P oio|e(ofo|e
PSHB “37 4 1 | B-Mgp,SP-1-SP IR
Pull Dats PULA 32 4 1 SP+ 18P, Mgp— A oo o|oje|e
PULB 133 4 1] SP+1-8P,Mgp—B oie(o|vj0ie
Rotate Left ROL 89 7 2(7 6 3 M olei1 (@1
ROLA 49 2 1 A}l—_D—-ED:] oleltiti®1
ROLB 5 2 1|8 c b7 == bd ele it
Rotate Right ROR 86 7 2076 5 3 M} DOEHGE:
RORA s 2 1| at g ~ oo eie(1|1[®)
RORB 5 2 1|8 c b7 — b0 DOHHGE
shitt Left, Arithmetic ASL 68 7 2|78 6 3 M - olo|2iti®t
ASLA 48 2 1| A o - -0 NI GH
ASLE 58 2 1|8 c b7 50 JUIHHGHE
Shift Right, Arithmetic ASR 6/ 7 2|77 B 3] - eloisit B
ASRA 47 2 1 AQEEEED’D eio|11(B):
) ASRB 57 2 1|8 b7 b0 [o|lelt| 1B
Shitt Right, Logic LSR 64 7 2174 8 3 M — eie® R ¢®I
LSRA 4 2 1| A 0~ TITH -~ O sle(R1I®?
LSRB 5 2 1|8 b7 0 C I GHE
Store Acmitr. STAA 97 4 2|A7 6 2|B7T 5 3 A-=M e|o|l|}|Re®
STAB D7 4 2|E7 B 2)F7 5 3 B->M olo|l|l|R|e
Subtract SUBA 80 2 Z|% 3 2|AD 5 2|BO 4 3 A-M-=A ool |ttt
NULE) O 2 2(DD 3 2|E0 5 2Z2|FO 4 3 B-WM—B oottt
Subtract Acmltrs. $8A M 2 1] A-B—-A elo|tlt|Tit
Subtr. with Carry SBCA 82 2 2|92 3 2|A2 5 2|BZ 4 3 A-M-C—-A oieftiTit 1
SBCB cz 2 2|D2 E2 5 F2 3 B-M-C—B oottt
Transter Acmitrs TAB 16 2 1 A-B o|le|t|1|R|®
TBA 17 2 1 B—>A olell|1|R|®
Test, Zero &t Minus TST 6D 7 2|70 6 3 M -00 ole|tITIRIR
TSTA 40 2 1| A-00 el®|l|TIR|R
TSTB 50 2z 1 B - 00 eo|®|1|tIR|R
HiVIN(Z|V|C
LEGEND: CONDITION CODE SYMBOLS: CONDITION CODE REGISTER NOTES:
DP Operation Code {Hexadecimal); (Bit set if test is true and cleared otherwise)
~ f\fumber of MPU Cycles; H Hal-carry from bit 3; 1 (Bit V) Test: Result = 100000007
o omber of Frogam Bytes | Intemupt mask 2 (BitT) Test: Result = 00000000
rithmetic Plus; N Negative {sign bit) . . o
~ Arithmetic Minus; Z Zero (byte) 3 (Bit C) Test: Decimal value of most significant BCD
- Boolean AND; v Overflow, 2's complement Character grevater 'h_an nine?
Mgp Contents of memory location pointed to be Stack Pointer; C Carry from bit 7 {Not cleared if previously set.)
+ Boolean Inclusive DR: R Reset Always 4 (Bit V) Test: Operand = 10000000 prior to execution?
® Boolean Exclusive OR; S Set Always .5 (Bit V) Test: Operand = 01111111 prior to execution?
M Complement of M; ¢ Testand set if true, cleared otherwise 6 (Bit V) Test: Set equal to result of N@C after shift has occurred.
nd Transfer Into; [Not Affected
0 Bit = Zero;
00 Byte=Zern;

TABLE 2 — ACCUMULATOR AND MEMORY OPERATIONS

Note — Accumulator addressing mode instructions are included in the column for IMPLIED addressing

@ MOTOROLA Semiconductor Products Inc.

14

PROGRAM CONTROL OPERATIONS

Program Control operation can be subdivided into two
categories: (1) Index Register/Stack Pointer instructions; (2)
Jump and Branch operations.

Index Register/Stack Pointer Operations

The instructions for direct operation on the MPU’s Index
Register and Stack Pointer are summarized in Table 3.
Decrement (DEX, DES), increment (INX, INS), foad (LDX,
LDS), and store (STX, STS) instructions are provided for
both. The Compare instruction, CPX, can be used to com-
pare the Index Register to a 16-bit value and update the Con-
dition Code Register accordingly.

The TSX instruction causes the Index Register to be load-
ed with the address of the last data byte put onto the
’stack.”” The TXS instruction loads the Stack Pointer with a
value equal to one less than the current contents of the Index
Register. This causes the next byte to be pulled from the
stack’’ to come from the location indicated by the index
Register. The utility of these two instructions can be clarified
by describing the “stack’” concept relative to the M6800
system.

The ""stack” can be thought of as a sequential list of data
stored in the MPU’s read/write memory. The Stack Pointer
contains a 16-bit memory address that is used to access the
list from one end on a last-in-first-out {LIFO) basis in contrast
to the random access mode used by the MPU’s other ad-
dressing modes.

The MCB6800 instruction set and interrupt structure allow
extensive use of the stack concept for efficient handiing of
data movement, subroutines and interrupts. The instructions
can be used to establish one or more “'stacks” anywhere in
read/write memory. Stack length is limited only by the
amount of memory that is made available.

Operation of the Stack Pointer with the Push and Pull in-
structions is illustrated in Figures 15 and 16. The Push in-
struction (PSHA) causes the contents of the indicated ac-
cumulator (A in this example) to be stored in memory at the
location indicated by the Stack Pointer. The Stack Pointer is
automatically decremented by one following the storage
operation and is ""pointing”’ to the next empty stack location.
The Pull instruction (PULA or PULB) causes the last byte
stacked to be loaded into the appropriate accumulator. The

Stack Pointer is automatically incremented by one just prior
to the data transfer so that it will point to the last byte stack-
ed rather than the next empty location. Note that the PULL
instruction does not “remove’’ the data from memory; in the
example, 1A is still in location (m+ 1) following execution of
PULA. A subseqguent PUSH instruction would overwrite that
Jocation with the new '‘pushed’ data.

Execution of the Branch to Subroutine (BSR) and Jump to
Subroutine (JSR) instructions cause a return address to be
saved on the stack as shown in Figures 18 through 20. The
stack is decremented after each byte of the return address is
pushed onto the stack. For both of these instructions, the
return address is the memory location following the bytes of
code that correspond to the BSR and JSR instruction. The
code required for BSR or JSR may be either two or three
bytes, depending on whether the JSR is in the indexed (two
bytes) or the extended {three bytes) addressing mode.
Before it is stacked, the Program Counter is automatically in-
cremented the correct number of times to be pointing at the
location of the next instruction. The Return from Subroutine
Instruction, RTS, causes the return address to be retrieved
and loaded into the Program Counter as shown in Figure 21.

There are several operations that cause the status of the
MPU to be saved on the stack. The Software interrupt {SW1)
and Wait for Interrupt (WAI) instructions as well as the
maskabte (IRQ) and non-maskable (NMI) hardware inter-
rupts all cause the MPU'’s internal registers (except for the
Stack Pointer itself) to be stacked as shown in Figure 23.
MPU status is restored by the Return from Interrupt, RTI, as
shown in Figure 22.

Jump and Branch Operation

The Jump and Branch instructions are summarized in
Table 4. These instructions are used to control the transfer or
operation from one point to another in the contro! program.

The No Operation instruction, NOP, while included here,
is a jump operation in a very limited sense. lts only effect is to
increment the Program Counter by one. It is useful during
program development as a ‘‘stand-in” for some other in-
struction that is to be determined during debug. It is also us-
ed for equalizing the execution time through alternate paths
in a control program.

TABLE 3 — INDEX REGISTER AND STACK POINTER INSTRUCTIONS

COND. CODE REG.

IMMED DIRECT INDEX EXTND IMPLIED 5(413(2(1]0
POINTER OPERATIONS MNEMONIC [OP | ~| = |OP| ~ | £ 0P}~ | £|OP|~ [=|0OP|~| = BOOLEAN/ARITHMETIC OPERATION [H|I[NjZiViC
Compare index Reg cPX 8C | 3| 3(9Cc| 4|2 {AC|6|2]BC|[5 |3 XH-M XL ~-M+1) O HY
Decrement index Reg DEX 09 |4 |1 X -1-X ojefo ! ole
Decrement Stack Pntr DES 381411 SP—-1-8P ois o s ole
Increment Index Reg INX 08,4 1 X+1->X oieollle|e
Increment Stack Pntr INS 3|41 SP+ 18P LI A K 2N
Load Index Reg LDX CE|3| 3|DE| 4| 2 |EE|6|2|FE|l5]|3 M= Xp, M+ 1) = X oD |R|e
Load Stack Pntr LDS 8E { 3| 3|9Ef 4| 2|AE|6 | 2|BE|DB |3 M= SPy, (M + 1) =8P o oD 1|R|®;
Store Index Reg STX DF|{5| 2 |EF |7 | 2|FF} 6 |3 XH—=M X ~>(M+1) e oDI|R|e®
Store Stack Pntr STS 9F | 5 | 2 |AF |7 | 2 {BF| 6 |3 SPH =M, SPL—~>(M+1) o oD 1| R|e®
Indx Reg — Stack Pntr TXS 3541 X-1-8P oo o0 oo
Stack Pntr — Indx Reg TSX 304 (1 SP+1—-X dRdLIRILS

@ {Bit N) Test: Sign bit of most significant (MS) byte of resuit= 17
@ (Bit V) Test: 2’s complement overflow from subtraction of ms bytes?

(® (Bit N) Test: Result less than zero? (Bit 15 = 1)

@ MOTOROLA Semiconductor Products Inc.

15

FIGURE 15 — STACK OPERATION, PUSH INSTRUCTION

MPU

ACCA

7F

63

FD

[—
-

Next instr.

\

{a) Before PSHA

(—

Data Bus

PSHA <)

MPU

ACCA

m -2

SP —e m — 1

7F

63

FD

New Data m
m+ 1
Previously
Stacked m 4+ 2
Data
m+ 3
PC —>

=
]

PSHA

Next Instr.

FIGURE 16 — STACK OPERATION, PULL INSTRUCTION

MPU

ACCA

m+ 1
Previously
Stacked m+ 2
Data

m+ 3

PC =t

m - 2

m —1

m+1 1A
Previously
Stacked m+ 2 3C
Data
m+3 D5
|
PC = PULA

Next Instr,

/

(a) Before PULA

(—

(—

\

(b) After PSHA

MPU

ACCA

m—2
m -1
m

SP—» m+1

m+ 2

Previously
Stacked m+ 3
Data

PC =

@ MOTOROLA Semiconductor Products Inc.

3C

D5

EC

/
_.__—-//—

PULA

Next Instr,

(b) After PULA

T —

TABLE 4 — JUMP AND BRANCH INSTRUCTIONS

COND. CODE REG.

RELATIVE INDEX EXTND IMPLIED 5(413|2(110
OPERATIONS MNEMONIC OP |~ | #|0P, ~ | #£|0P|~ | #|0P |~ | # BRANCH TEST HiI|[N|Z]|V|C
Branch Always BRA 20412 None o oo oo e
Branch If Carry Clear BCC 244 |2 C=0 o| oo ojo|e
Branch If Carry Set BCS 2548 |2 C=1 ® 0 o o 00
Branch if = Zero BED 2714 |2 Z=1 s oo 0o e
Branch If = Zero BGE 2014 |2 N®V=D o oo 0 i0ie
Branch f > Zero BGT €| 4|2 Z+(N®VI=D o o|o/ o|ele:
Branch If Higher BHI 2214]2 C+Z=0 o o|ejieiole
Branch If < Zero BLE 2F| 4|2 Z+IN@V)=1 o o o/ si0 0@
Branch If Lower Or Same BLS 2314 |2 C+Z=1 o o ol sl o0
Branch If < Zero BLT 2D 4|2 NOV=1 e: oo 0|0 0@
Branch If Minus BMI B4 |2 N=1 . o s e 0 e
Branch If Not Equal Zero BNE 2614 |2 Z=0 o o ol o @ @
Branch If Overflow Clear BVC 281412 v=0 o o o o0
Branch If Overflow Set BVS 2914 |2 V=1 e o | o 0o 0@
Branch If Plus BPL 2A 4| 2 N=0 o o ®o| o 0|0
Branch To Subroutine BSR 8D| 8 2 o/ ol e o o 6@
Jump JMP GE| 4| 2|7E| 3| 3 See Special Dperations o oo/ 0o 0|0
Jump To Subroutine JSR AD| 8| 28D 9| 3 } e o | o| 0| 0|e
No Operation NOP 0112 {1 Advances Prog. Catr. Only ol o0/ 000
Return From Interrupt RTI 3B |10 @
Return From Subroutine RTS 39 1 ? ol o|o o|0ole
Software Interrupt Swi 3F 12 01 > See Special Operations ® o o o 0 @
Wait for Interrupt* WAl 3E|9 {1 ’ ® o oo @

*WAI puts Address Bus, R/W, and Data Bus in the three-state made while VMA is held low.
@ (Al Load Condition Code Register from Stack. {See Special Operations)

@ {Bit 1) Setwhen interrupt occurs. }f previously set, 2 Non-Maskable interrupt

is required to exit the wait state.

Execution of the Jump Instruction, JMP, and Branch
Always, BRA, affects program flow as shown in Figure 17.
When the MPU encounters the Jump (Indexed} instruction,
it adds the offset to the value in the Index Register and uses
the result as the address of the next instruction to be ex-
ecuted. In the extended addressing mode, the address of the
next instruction to be executed is fetched from the two loca-
tions immediately following the JMP instruction. The Branch
Always (BRA) instruction is similar to the JMP {extended) in-
struction except that the relative addressing mode applies
and the branch is limited to the range within —125 or + 127
bytes of the branch instruction itself. The opcode for the
BRA instruction requires one less byte than JMP (extended)
but takes one more cycle to execute.

The effect on program flow for the Jump to Subroutine
(JSR) and Branch to Subroutine (BSR} is shown in Figures
18 through 20. Note that the Program Counter is properly in-
cremented to be pointing at the correct return address
before it is stacked. Operation of the Branch to Subroutine
and Jump to Subroutine (extended) instruction is similar ex-
cept for therange. The BSR instruction requires less opcode
than JSR (2 bytes versus 3 bytes) and also executes one cy-

cle faster than JSR. The Return from Subroutine, RTS, is
used as the end of a subroutine to return to the main pro-
gram as indicated in Figure 21.

The effect of executing the Software Interrupt, SWI, and
the Wait for Interrupt, WAI, and their relationship to the
hardware interrupts is shown in Figure 22. SWI causes the
MPU contents to be stacked and then fetches the starting
address of the interrupt routine from the memory locations
that respond to the addresses FFFA and FFFB. Note that as
in the case of the subroutine instructions, the Program
Counter is incremented 1o point at the correct return address
before being stacked. The Return from Interrupt instruction,
RTI, {(Figure 22) is used at the end of an interrupt routine to
restore control to the main program. The SWH instruction is
useful for inserting break points in the control program, that
is, it can be used to stop operation and put the MPU
registers in memory where they can be examined. The WAI
instruction is used to decrease the time required to service a
hardware interrupt; it stacks the MPU contents and then
waits for the interrupt to occur, effectively removing the
stacking time from a hardware interrupt sequence.

FIGURE 17 — PROGRAM FLOW FOR JUMP AND BRANCH INSTRUCTIONS

PC Main Program

n [6E=JmP
K = Offset
INDXD n+1 = EXTND

(]
X+ K I Next Instruction l

(a} Jump

PC
n
n+1
n+2

K

MOTOROLA Semiconductor Products Inc.

17

Main Program
TE=JMP
Ky = Next Address
Ky = Next Address

[Next lns.tructig‘l

Main Program
n 2¢=BRA
n+1 K = Offset”

in+2)+K rNext Instruction]

*K = Signed 7-bit value
(b) Branch

SP~— m

m+ 1

PC=—» n

n+2

FIGURE 18 — PROGRAM FLOW FOR BSR

f

7E

7A

__—
 —

BSR

K = Offset*

Next Main instr.

/

*K = Signed 7-Bit Value

{a) Before Execution

FIGURE 19 — PROGRAM FLOW FOR JSR (EXTENDED)

/

m+ 1 7€
m+ 2 7A
70

\/_..—\4
f

JSR = BD

PC—» n

n+1 Sy = Subr, Addr,
n+2 S| = Subr. Addr.
n+3 Next Main Instr,

L/,__

(a) Before Execution

{S formed from
Sy andS))

1

m—1 (n +-3)H
m (n+3)L

m+1 7E

m+ 2 7A

7C

f

n JSR

Sp = Subr. Addr.

n+2 S| = Subr. Addr.

Next Mair Instr.

f

—

Tst Subr, Instr,

n+3

PC—»S

L

(b} After Execution

@ MOTOROLA

SP—»m — 2

PC—»(n + 2) K

~/

(n +2)H

(n+2)L

7E

L
~__/“

BSR

K = Offset

Next Main instr.

——

1st Subr. Instr.

L/—\

{b) After Execution

FIGURE 20 — PROGRAM FLOW FOR JSR (INDEXED)

_/

7E m+ 1

—

7A

PC—» n JSR = AD
n+1 K = Offset*
n+2 Next Main Instr,

/—

*K = 8-Bit Unsigned Value

{a) Before Execution

Semiconductor Products Inc.

18

PC—» X* + K

———/

n+2)H

(h+2)L

7E

7A

-

JSR = AD

K = Offset

Next Main Instr.

—

st Subr. instr.

I

*Contents of Index Register

{b} After Execution

PC — Sp

m— 6
m—5
m— 4
m - 3
m -2
m— 1

m

n+1

PC —a

FIGURE 21 — PROGRAM FLOW FOR RTS

(n + 3)H

(n+3)L

7E

7A

L_/~
/

JSR = BD

Sy = Subr. Addr.

Sy = Subr. Addr.

Next Main Instr,

7

Last Subr. Instr.

RTS

—

(a) Before Execution

n+1

n+ 2

PC ~——» n+3

FIGURE 22 — PROGRAM FLOW FOR RTI

”

CCR

ACCB

ACCA

Xy (Index Reg)

X {index Reg)

PC(n+1)H

PC(n+1)L

[= ——

/‘

Next Main Instr.

/

Last Inter. Instr.

RTI

(a) Before Execution

/ |

m—7
m—6
m—5
m—4
m -3
m—2
m—1
SP—fw= m

PC—aa— n+1

7€

7A

_/—
ﬂ_———/

JSR = BD

Sy = Subr. Addr.

S| = Subr. Addr.

Next Main Instr.

\/

L.ast Subr. Instr.

RTS

L/_

(b) After Execution

CCR

ACCB

ACCA

XH

XL

PCH

[e —
/

Next Main Instr.

e

Last Subr. Instr,

RTI

(b) After Execution

MOTOROLA Semiconductor Products Inc.

FIGURE 23 — PROGRAM FLOW FOR INTERRUPTS

Wait For Hardware Interrupt or
Software Interrupt Interrupt Non-Maskable Interrupt (NMI)
Main Program Main Program Main Program
n | 3F=SWi n 3E = WAI
n+1 Next Main Instr. n+1l Next Main fnstr. n Last Prog. Byte
- J \ J [\ J
TV ﬂf
Continue Main Prog.
n+1 Next Main Instr
Stack
SP—= m -7
m — 6 { Condition Code
Stack MPU ::> oo
Register Contents m—5| Acmitr.8
m—4} Acmitr. A
m — 3| Index Register (Xy)
m — 2| Index Register (X!
m—1 PC(n + 1)H
m PC(n + 1)L
SWI HDWR WAI NMI ‘ Restart)
INT

Int.

(CCR 4)

FFFA
FFFB

FFF8
FFFY

vy

Mask Set?

NMt

Wait Loop

FFFC
FFFD

FFFE
FFFF

'

'

-

Interrupt Memory Assignment1
Set Interrupt

FFF8 IRQ MS Mask (CCR 4)
FFF9 IRQ LS *
FFFA SWI MS First Instr.
FFFB SWi LS Addr. Formed Load Interrupt

MS By Fetching Vector Into
FFFC NMI 2-Bytes From Program Counter
FFFD NMI LS Per. Mem.
FFFE Reset MS Assign.
FFFF Reset LS

NOTE: MS = Most Significant Address Byte;
LS = Least Significant Address Byte;

@ MOTOROLA

r Interrupt Program A

1st Interrupt Instr,

Semiconductor Products Inc.
20

FIGURE 24 — CONDITIONAL BRANCH INSTRUCTIONS

BMI N=1 ; BEQ : Z=1 ;
BPL : N=¢ ; BNE Z=¢ ;
BVC : V=¢ : BCC : C=¢ ;
BVS : v=1 ; BCS c=1;
BHI C+Z=¢ ; BLT : N®V =1
BLS : c+z=1 ; BGE : NV =9

BLE : Z+(N®V)=1 ;

BGT : Z+(IN®V)=¢ ;

The conditional branch instructions, Figure 24, consists of
seven pairs of complementary instructions. They are used to
test the results of the preceding operation and either con-
tinue with the next instruction in sequence (test fails}) or
cause a branch to another point in the program (test suc-
ceeds).

Four of the pairs are used for simple tests of status bits N,
Z,V,and C:

1. Branch on Minus (BM1} and Branch On Plus (BPL) tests
the sign bit, N, to determine if the previous result was
negative or positive, respectively.

2. Branch On Equal (BEQ) and Branch On Not Equal
(BNE) are used to test the zero status bit, Z, to determine
whether or not the result of the previous operation was equal
to zero. These two instructions are useful following a Com-
pare (CMP) instruction to test for equality between an ac-
cumulator and the operand. They are also used following the
Bit Test (BIT) to determine whether or not the same bit posi-
tions are set in an accumulator and the operand.

3. Branch On Overflow Clear (BVC) and Branch On
Overflow Set (BVS) tests the state of the V bit to determine
if the previous operation caused an arithmetic overfiow.

4. Branch On Carry Clear (BCC) and Branch On Carry Set
(BCS) tests the state of the C bit to determine if the previous
operation caused a carry to occur. BCC and BCS are useful

for testing relative magnitude when the values being tested
are regarded as unsigned binary numbers, that is, the values
are in the range 00 (lowest} to FF (highest). BCC following a
comparison {CMP)} will cause a branch if the {unsigned)
value in the accumulator is higher than or the same as the
value of the operand. Conversely, BCS will cause a branch if
the accumulator value is lower than the operand.

The fifth complementary pair, Branch On Higher (BH1) and
Branch On Lower or Same (BLS) are, in a sense, com-
plements to BCC and BCS. BH! tests for both C and Z=0; if
used following a CMP, it will cause a branch if the value in
the accumulator is higher than the operand. Conversely,
BLS will cause a branch if the unsigned binary value in the
accumulator is lower than or the same as the operand.

The remaining two pairs are useful in testing results of
operations in which the values are regarded as signed two's
complement numbers. This differs from the unsigned binary
case in the following sense: in unsigned, the orientation is
higher or lower; in signed two's complement, the com-
parison is between larger or smaller where the range of
values is between — 128 and + 127.

Branch On Less Than Zero (BLT) and Branch On Greater
Than Or Equal Zero (BGE) test the status bits for Ne V=1
and Ne V=0, respectively. BLT will always cause a branch
following an operation in which two negative numbers were
added. In addition, it will cause a branch following a CMP in
which the value in the accumulator was negative and the
operand was positive. BLT will never cause a branch follow-
ing @ CMP in which the accumulator value was positive and
the operand negative. BGE, the complement to BLT, will
cause-a branch following operations in which two positive
values were added or in which the result was zero.

The last pair, Branch On Less Than Or Equal Zero (BLE)
and Branch On Greater Than Zero (BGT) test the status bits
forZe (N+V)=1 and Z® (N+V)=0, respectively. The ac-
tion of BLE is identical to that for BLT except that a branch
will also occur if the result of the previous result was zero.
Conversely, BGT is similar to BGE except that no branch will
occur following a zero result.

CONDITION CODE REGISTER
OPERATIONS

The Condition Code Register {CCR) is a 6-bit register
within the MPU that is useful in controlling program flow
during system operation. The bits are defined in Figure 25.

The instructions shown in Table 5 are available to the user
for direct manipulation of the CCR.

A CLI-WAI instruction sequence operated properly, with
early MC8800 processors, only if the preceding instruction
was odd (Least Significant Bit=1). Similarly it was advisable

MOTOROLA Semiconductor Products Inc.

21

to precede any SE! instruction with an odd opcode — such
as NOP. These precautions are not necessary for MC6800
processors indicating manufacture in November 1877 or
later.

Systems which reguire an interrupt window to be opened
under program control should use a CLI-NOP-SEI sequence
rather than CLI-SEL

FIGURE 25 — CONDITION CODE REGISTER BIT DEFINITION

bs bg bz by by bp

nl Iwfzfv]c]

Half-carry; set whenever a carry from b3 to bg of the result is generated
by ADD, ABA, ADC; cleared if no b3 to by carry; not affected by other
instructions.

Interrupt Mask; set by hardware or software interrupt or SEI instruction;
cleared by CLi instruction. {(Normally not used in arithmetic operations.)
Restored to a zero as a result of an RT1 instruction if |y stored on the

stacked is low.

Negative; set if high order bit (b7) of result is set; cleared otherwise.

Zero; set if result = 0; cleared otherwise.

V = Overlow; set if there was arithmetic overflow as a result of the operation;

cleared otherwise.

C = Carry; set if there was a carry from the most significant bit (by) of the

result; cleared otherwise.

TABLE 5 — CONDITION CODE REGISTER INSTRUCTIONS

COND. CODE REG.

IMPLIED 5|43 (2{1]0
OPERATIONS MNEMONIC {COP} ~ | = | BOOLEANOPERATION| H | Il [N {Z (VI C
Clear Carry cLC 0c | 2 [1 0-C el e|o |® o | R
Clear Interrupt Mask ctl 0E | 2 | 1 01 ® R|le|e o e
Clear Overflow CLv OA| 2 |1 0>V s e/ o o | R|e
Set Carry SEC 0D 2|1 1-C s o (o oo S
Set Interrupt Mask SEl OF [2] 1 11 o | S|o|e e e
Set Overflow SEV 0B|2 |1 1>V o|e o le S| e
Acmlitr A~ CCR TAP 062 (1 A—CCR
CCR ~ Acmltr A TPA 072 |1 CCR—A AEIENEIEIE
R = Reset
S = Set

® — Naot affected

@ (AL L) Set according to the contents of Accumulator A.

ADDRESSING MODES

The MPU operates on 8-bit binary numbers presented to it
via the Data Bus. A given number (byte) may represent
either data or an instruction to be executed, depending on
where it is encountered in the control program. The M6800
has 72 unigue instructions, however, it recognizes and takes
action on 197 of the 256 possibilitis that can occur using an
8-bit word length. This larger number of instructions results
from the fact that many of the executive instructions have
more than one addressing mode.

These addressing modes refer to the manner in which the
program causes the MPU to obtain its instructions and data.
The programmer must have a method for addressing the
MPU’s internal registers and all of the external memory loca-
tions.

Selection of the desired addressing mode is made by the
user as the source statements are written. Translation into

@ MOTOROLA Semiconductor Products Inc.

22

appropriate opcode then depends on the method used. If
manual translation is used, the addressing mode is inherent
in the opcode. For example, the immediate, Direct, Indexed,
and Extended modes may all be used with the ADD instruc-
tion. The proper mode is determined by selecting (hex-
adecimal notation) 8B, 9B, AB, or BB, respectively.

The source statement format includes adeguate informa-
tion for the selection if an assembler program is used to
generate the opcode. For instance, the Immediate mode is
selected by the Assembler whenever it encounters the “'#”
symbol in the operand field. Similarly, an X" in the operand
field causes the Indexed mode to be selected. Only the
Relative mode applies to the branch instructions, therefore,
the mnemonic instruction itself is enough for the Assembler
to determine addressing mode.

For the instructions that use both Direct and Extended
modes, the Assembler selects the Direct mode if the operand
value is in the range 0-255 and Extended otherwise. There
are a number of instructions for which the Extended mode is
valid but the Direct is not. For these instructions, the
Assembler automatically selects the Extended mode even if
the operand is in the 0-255 range. The addressing modes are
summarized in Figure 26.

Inherent (Includes ““Accumulator Addressing’”” Mode}

The successive fields in a statement are normally
separated by one or more spaces. An exception to this rule
occurs for instructions that use dual addressing in the
operand field and for instructions that must distinguish be-
tween the two accumulators. In these cases, A and B are

“operands’’ but the space between them and the operator
may be omitted. This is commonly done, resuiting in ap-
parent four character mnemonics for those instructions.

The addition instruction, ADD, provides an example of
dual addressing in the operand field:

Operator Operand Comment
ADDA MEM12 ADD CONTENTS OF MEM12 TO ACCA
or
ADDB MEM12 ADD CONTENTS OF MEM12 TO ACCB

The example used earlier for the test instruction, TST, also
applies to the accumulators and uses the ““accumulator ad-
dressing mode’’ to designate which of the two accumulators
is being tested:

FIGURE 26 — ADDRESSING MODE SUMMARY

Direct: n DO Instruction

Example: SUBB Z

Addr. Range = 0—255 n+1 Z = Oprnd Address

A

n+2 Next Instr.
[
[
°
(K = One-Byte Oprnd) z K = Operand
OR
(K = Two-Byte Oprnd) z K = Operand
Z4+1 K = Operand

& If Z <255, Assembler Select Direct Mode
If Z > 2585, Extended Mode is selected

Extended: n FO instruction

Example: CMPA Z n+1 Zy4 = Oprnd Address

Ad(;rs',;?gg::ss n+2 | 2z, =o0prnd Address
n+3 Next nstr.
[
L J
L]
(K = One-Byte Oprnd) 4 K = Operand
OR
(K = Two-Byte Oprnd)} z Ky = Operand
Z+1 K = Operand

MOTOROLA Semiconductor Products Inc.

Immediate: n Instruction

Example: LDAA #K n+1 _

(K = One-Byte Oprnd) K = Operand
n+2 Next Inst.

OR

(K = Two-Byte Oprnd) n i

{CPX, LDX, and LDS) Instruction
n+1 Ky = Operand
n+2 K| = Operand
n+3 Next instr.

Relative: n Instruction

Examplie: BNE K n+1 +K = Brnch Offset

(K = Signed 7-Bit Value) n+2

Next Instr. é

Addr. Range: []
—125 10 +129
Relative to n.
[
®

(n+2)tK

Next Instr. @

2\ 11 Brnch Tst False, /\ 11 Brch Tst True.

Indexed: n Instruction
Exampile: ADDA Z, X n+1 Z = Offset
Addr. Range: n+2 Next Instr.
0—255 Relative to
index Register, X °

®

o
(Z = 8-Bit Unsigned X+2Z K = Operand
Value)

Operator Comment
TSTB TEST CONTENTS OF ACCB
or
TSTA TEST CONTENTS OF ACCA

A number of the instructions either alone or together with
an accumulator operand contain all of the address informa-
tion that is required, that is, “inherent” in the instruction
itself. For instance, the instruction ABA causes the MPU to
add the contents of accmulators A and B together and place
the result in accumulator A. The instruction INCB, another
example of “accumulator addressing,”’ causes the contents
of accumulator B to be increased by one. Similarly, INX, in-
crement the Index Register, causes the contents of the Index
Register to be increased by one.

Program flow for instructions of this type is illustrated in
Figures 27 and 28. In these figures, the general case is shown
on the left and a specific example is shown on the right.
Numerical examples are in decimal notation. Instructions of
this type require only one byte of opcode. Cycle-by-cycle
operation of the inherent mode is shown in Table 6.

Immediate Addressing Mode — In the immediate address-
ing mode, the operand is the value that is to be operated on.
For instance, the instruction

Operator Operand Comment
LDAA #25 LOAD 25 INTO ACCA

causes the MPU to “immediately load accumulator A with
the value 25'; no further address reference is required. The
immediate mode is selected by preceding the operand value
with the "“# symbol. Program flow for this addressing mode
is illustrated in Figure 29.

The operand format allows either properly defined sym-
bols or numerical values. Except for the instructions CPX,
LDX, and LDS, the operand may be any value in the range O
to 265. Since Compare Index Register (CPX}, Load Index
Register (LDX), and Load Stack Pointer {(LDS}, require 186-bit
values, the immediate mode for these three instructions re-
quire two-byte operands. In the Immediate addressing

FIGURE 27 — INHERENT ADDRESSING

MPY MPU
INDEX
K | 199 +200 <
HAY RAM
P;é’hfg;‘e" PROGRAM
MEMORY
PC INsTR K PC = 5000 inx K
GENERAL FLOW EXAMPLE

@ MOTOROLA Semiconductor Products Inc.

mode, the '‘address’”’ of the operand is effectively the
memory location immediately following the instruction itself.
Table 7 shows the cycle-by-cycle operation for the im-
mediate addressing mode.

Direct and Extended Addressing Modes — In the Direct
and Extended modes of addressing, the operand field of the
source statement is the address of the value that is to be
operated on. The Direct and Extended modes differ only in
the range of memory locations to which they can direct the
MPU. Direct addressing generates a single 8-bit operand
and, hence, can address only memory locations O through
255; a two byte operand is generated for Extended address-
ing, enabling the MPU to reach the remaining memory loca-
tions, 256 through 65535. An example of Direct addressing
and its effect on program flow is illustrated in Figure 30.

The MPU, after encountering the opcode for the instruc-
tion LDAA (Direct) at memory location 5004 (Program
Counter=5004), looks in the next location, 5005, for the ad-
dress of the operand. [t then sets the program counter equal
to the value found there {100 in the example) and fetches the
operand, in this case a value to be loaded into accumulator
A, from that location. For instructions requiring a two-byte
operand such as LDX {Load the index Register}, the operand
bytes would be retrieved from locations 100 and 101. Table 8
shows the cycle-by-cycle operation for the direct mode of
addressing.

Extended addressing, Figure 31, is similar except that a
two-byte address is obtained from locations 5007 and 5008
after the LDAB (Extended) opcode shows up in location
5006. Extended addressing can be thought of as the “stan-
dard” addressing mode, that is, it is @ method of reaching
any place in memory. Direct addressing, since only one ad-
dress byte is required, provides a faster method of process-
ing data and generates fewer bytes of control code. In most
applications, the direct addressing range, memory locations
0-255, are reserved for RAM. They are used for data buffer-
ing and temporary storage of system variables, the area in
which faster addressing is of most value. Cycle-by-cycle
operation is shown in Table 9 for Extended Addressing.

FIGURE 28 — ACCUMULATOR ADDRESSING

MPU MPU
accs
15 —18
RAM RAM
PROGRAM PROGRAM
MEMORY MEMORY
pc| _mnstR K pc=5001| incB K

GENERAL FLOW EXAMPLE

Relative Address Mode — In both the Direct and Extended
modes, the address obtained by the MPU is an absolute
numerical address. The Relative addressing mode, im-
plemented for the MPU’s branch instructions, specifies a
memory location relative to the Program Counter’s current
location. Branch instructions generate two bytes of machine
code, one for the instruction opcode and one for the
"'relative’’ address {see Figure 32). Since it is desirable to be
able to branch in either direction, the 8-bit address byte is in-
terpreted as a signed 7-bit value; the 8th bit of the operand is
treated as a sign bit, 0" =plus and "1 =minus. The re-
maining seven bits represent the numerical value. This
results in a relative addressing range of 4+ 127 with respect to
the location of the branch instruction itself. However, the
branch range is computed with respect to the next instruc-
tion that would be executed if the branch conditions are not
satisfied. Since two bytes are generated, the next instruction
is located at PC+2. If D is defined as the address of the
branch destination, the range is then:

(PC+2)-127<D=<{PC+2)+127
or
PC—-1256<D=<PC+129
that is, the destination of the branch instruction must be
within —125 to + 129 memory locations of the branch in-
struction itself. For transferring control beyond this range,

the unconditional jump (JMP), jump to subroutine (JSR},
and return from subroutine (RTS) are used.

In Figure 32, when the MPU encounters the opcode for
BEQ (Branch if result of last instruction was zero), it tests the
Zero bit in the Condition Code Register. If that bitis 0,” in-
dicating a non-zero result, the MPU continues execution
with the next instruction {in location 5010 in Figure 32). If the
previous result was zero, the branch condition is satisfied
and the MPU adds the offset, 15 in this case, to PC+ 2 and
branches to location 5025 for the next instruction.

The branch instructions allow the programmer to efficient-
ly direct the MPU to one point or another in the controf pro-
gram depending on the outcome of test results. Since the
control program is normally in read-only memory and cannot
be changed, the relative address used in execution of branch
instructions is a constant numerical value. Cycle-by-cycle
operation is shown in Table 10 for relative addressing.

Indexed Addressing Mode — With indexed addressing,
the numerical address is variable and depends on the current
contents of the Index Register. A source statement such as

Comment
PUT A IN INDEXED LOCATION

Operator Operand
STAA X

causes the MPU to store the contents of accumulator A in

TABLE 6 — INHERENT MODE CYCLE-BY-CYCLE OPERATION

Address Mode Cycle | VMA R/W
and Instructions Cycles # Line Address Bus Line Data Bus
ABA DAA SEC 1 1 Op Code Address 1 Op Code
ASL DEC SE) 2 2 1 Op Code Address + 1 1 Op Code of Next Instruction
ASR INC SEV :
CBA LSR TAB
CLC NEG TAP
CL1I NOP TBA
CLR ROL TPA
CLV ROR TST
COM SBA
DES 1 1 Op Code Address 1 Op Code
PNESX a 2 1 Op Code Address + 1 1 Op Code of Next Instruction
INX 3 0 Previous Register Contents 1 Irrelevant Data (Note 1)
4 0] New Register Contents 1 Irrelevant Data (Note 1)
PSH 1 1 Op Code Address 1 Op Code
a 2 1 Op Code Address + 1 1 Op Code of Next Instruction
3 1 Stack Pointer 0 Accumulator Data
4 0 Stack Pointer — 1 1 Accumulator Data
PUL 1 1 Op Code Address 1 Op Code
4 2 1 Op Code Address + 1 1 Op Code of Next Instruction
3 0 Stack Pointer 1 Irrelevant Data {Note 1)
4 1 Stack Pointer + 1 1 Operand Data from Stack
TSX 1 1 Op Code Address 1 Op Code
a 2 1 Op Code Address + 1 1 Op Code of Next Instruction
3 0 Stack Pointer 1 Irrelevant Data (Note 1)
a4 0 New Index Register 1 Irrelevant Data {Note 1)
TXS 1 1 Op Code Address 1 Op Code
a 2 1 Op Code Address + 1 1 Op Code of Next Instruction
3 0 Index Register 1 Irrelevant Data
4] New Stack Pointer 1 Irrelevant Data
RTS 1 1 Op Code Address 1 Op Code
2 1 Op Code Address + 1 1 Irrelevant Data (Note 2}
5 3 0 Stack Pointer 1 Irrelevant Data {Note 1}
4 1 Stack Pointer + 1 1 Address of Next Instruction (High
Order Byte)
5 1 Stack Pointer + 2 1 Address of Next Instruction (Low
Order Byte)

MOTOROLA Semiconductor Products Inc.

25

TABLE 6 — INHERENT MODE CYCLE-BY-CYCLE OPERATION {CONTINUED)

Address Mode Cycle| VMA R/W
and Instructions Cycles # Line Address Bus Line Data Bus
WAI 1 1 | Op Code Address 1 | Op Code
2 1 | Op Code Address + 1 1 | Op Code of Next Instruction
3 1 | Stack Pointer 0 { Return Address {Low Order Byte)
a4 1] Stack Pointer — 1 0 | Return Address (High Order Byte)
9 5 1 | Stack Pointer — 2 0 | Index Register (Low Order Byte!}
6 1 | Stack Pointer — 3 0 | Index Register (High Order Byte}
7 1 | Stack Pointer — 4 0 | Contents of Accumulator A
8 1 | Stack Pointer — 5 0 | Contents of Accumulator B
9 1 | Stack Pointer — 6 (Note 3) 1 | Contents of Cond. Code Register
RTI 1 1 | Op Code Address 1 | Op Code
2 1 [Op Code Address + 1 1 | Irrelevant Data {Note 2)
3 0 [Stack Pointer 1 | Irrelevant Data (Note 1)
4 1 | Stack Pointer + 1 1 | Contents of Cond. Code Register from
Stack
10 5 1 | Stack Pointer + 2 Contents of Accumulator B from Stack
6 1 |Stack Pointer + 3 1 | Contents of Accumulator A from Stack
7 1 {Stack Pointer + 4 1 | Index Register from Stack (High Order
Byte)
8 1 | Stack Pointer +5 1 | index Register from Stack {Low Order
Byte)
9 1 | Stack Pointer + 6 1 [Next Instruction Address from Stack
{High Order Byte)
10 1 |Stack Pointer + 7 1 | Next Instruction Address from Stack
{Low Order Byte)
SWi 1 1 |Op Code Address 1 |.Op Code
2 1 |Op Code Address + 1 1 | Irrelevant Data (Note 1)
3 1 | Stack Pointer 0 | Return Address {(Low Order Byte}
4 1 |Stack Pointer -- 1 0 | Return Address {High Order Byte)
5 1 |Stack Pointer — 2 0 | Index Register (Low Order Byte)
12 6 1 |Stack Pointer — 3 0 {Index Register (High Order Byte)
7 1 {Stack Pointer — 4 0 | Contents of Accumulator A
8 1 {Stack Pointer — 5 0 | Contents of Accumulator B
9 1 |Stack Pointer — 6 0 | Contents of Cond. Code Register
10 0 |Stack Pointer — 7 1 llirreievant Data (Note 1)
11 1 [Vector Address FFFA (Hex) 1 | Address of Subroutine {High Order
Byte)
12 1 [Vector Address FFFB (Hex) 1 | Address of Subroutine {Low Order
Byte)
Note 1. If device which is addressed during this cycle uses VMA, then the Data Bus will go to the high impedance three-state condition.
Depending on bus capacitance, data from the previous cycle may be retained on the Data Bus.
Note 2. Data is ignored by the MPU,
Note 3. While the MPU is waiting for the interrupt, Bus Availabie will go high indicating the following states of the control lines: VMA is

low; Address Bus, R/W, and Data Bus are all in the high impedance state.

the memory location specified by the contents of the Index
Register (recall that the label X" is reserved to designate the
Index Register). Since there are instructions for manipulating
X during program execution (LDX, INX, DEC, etc.), the In-
dexed addressing mode provides a dynamic "‘on the fly’" way
to modify program activity.

The operand field can also contain a numerical vaiue that
will be automatically added to X during execution. This for-
mat is illustrated in Figure 33.

When the MPU encounters the LDAB (Indexed) opcode in

MOTOROLA Semiconductor Products Inc.

26

location B00B, it looks in the next memory location for the
value to be added to X (5 in the example) and calculates the
required address by adding 5 to the present Index Register
value of 400. In the operand format, the offset may be
represented by a label or a numerical value in the range 0-255
as in the example. In the earlier example, STAA X, the
operand is equivalent to O, X, that is, the O may be omitted
when the desired address is equal to X. Table 11 shows the
cycle-by-cycle operation for the indexed Mode of Address-
ing.

FIGURE 29 — IMMEDIATE ADDRESSING MODE

FIGURE 30 — DIRECT ADDRESSING MODE

MPU MPU MPU MPU
ACCA ACCA
RAM RAM RAM RAM
<‘j <: ADDR DATA ADDR = 100 35
PROGRAM PROGRAM PROGRAM PROGRAM
MEMORY MEMORY MEMORY MEMORY
PC INSTR pc = 5002| LDA A PC INSTR PC = 5004 LDA A
DATA 25 K PC+1 ADDR 5005 100 <
ADDR =0 < 255
GENERAL FLOW EXAMPLE GENERAL FLOW EXAMPLE
TABLE 7 — IMMEDIATE MODE CYCLE-BY-CYCLE OPERATION
Address Mode Cycle |[VMA R/W
and Instructions Cycles # Line Address Bus Lire Data Bus
ADC EOR 1 1 Op Code Address 1 Op Code
AND &2a) 2 | 1 | opCode Address + 1 1 | Operand Data
BIT SBC
CMP SUB
CPX 1 1 Op Code Address 1 Op Code
tgi 3 2 1 Op Code Address + 1 1 Operand Data (High Order Byte)
3 1 Op Code Address + 2 1 Operand Data (Low Order Byte)
TABLE 8 — DIRECT MODE CYCLE-BY-CYCLE OPERATION
Address Mode Cycle | VMA R/W
and Instructions Cycles # Line Address Bus Line Data Bus
ADC EOR 1 1 | Op Code Address 1 | OpCode
ADD LDA 2 1 Op Code Address + 1 1 Address of Operand
AND ORA 3
BIT SBC 3 1 Address of Operand 1 Operand Data
CMP SUB
CPX 1 1 Op Code Address 1 Op Code
tgi 4 2 1 Op Code Address + 1 1 Address of Operand
3 1 Address of Operand 1 Operand Data {(High Order Byte)
4 1 Operand Address + 1 1 Operand Data (Low Order Byte)
STA 1 1 Op Code Address 1 Op Code
4 2 1 Op Code Address + 1 1 Destination Address
3 0 Destination Address 1 Irrelevant Data (Note 1)
4 1 Destination Address 0 Data from Accumulator
STS 1 1 Op Code Address 1 Op Code
STX 2 1 Op Code Address + 1 1 Address of Operand
5 3 0 Address of Operand 1 irrelevant Data {Note 1)
4 1 Address of Operand 0 Register Data (High Order Byte)
5 1 Address of Operand + 1 o} Register Data (Low Order Byte)

Note 1. If device which is address during this cycle uses VMA, then the Data Bus will go to the high impedance three-state condition.
Depending on bus capacitance, data from the previous cycle may be retained on the Data Bus.

MOTOROLA Semiconductor Products Inc.

27

ADDR

PC

GENERAL FLOW

FIGURE 31 — EXTENDED ADDRESSING MODE

MPU MPU
ACCB
<) =1
RAM RAM
DATA ADDR = 300 45
PROGRAM PROGRAM
MEMORY MEMORY
INSTR PC = 5006 LDA B
ADDR
300
ADDR
L~ 5009 L~

ADDR = 256

EXAMPLE

TABLE 9 — EXTENDED MODE CYCLE-BY-CYCLE

Address Made Cycle | vma R/W
and Instructions Cyctes = Line Address Bus Line Data Bus
STS 1 1 Op Code Address 1 Op Code
57X 2 1 Op Code Address + 1 1 Address of Operand (High Order Byte)
6 3 1 Op Code Address + 2 1 Address of Operand (Low Order Byte)
4 0 Address of Operand 1 Irrelevant Data {Note 1)
5 1 Address of Operand 0 Operand Data {High Order Byte)
6 1 Address of Operand + 1 0 Operand Data {Low Order Byte)
JSR 1 1 Op Code Address 1 Op Code
2 1 Op Code Address + 1 1 Address of Subroutine {High Order Byte)
3 1 Op Code Address + 2 1 Address of Subroutine {Low Order Byte)
4 1 Subroutine Starting Address 1 Op Code of Next Instruction
9 5 1 Stack Pointer 0 Return Address {Low Order Byte)
6 1 Stack Paointer - 1 0 Return Address {High Order Byte)
7 0 Stack Pointer -- 2 1 Irrelevant Data (Note 1)
8 0 Op Code Address + 2 1 Irrelevant Data (Note 1}
9 1 QOp Code Address + 2 1 Address of Subroutine (Low Order Byte)
JVIP 1 1 Op Code Address 1 Op Code
3 2 1 Op Code Address + 1 1 Jump Address {High Order Byte)
3 1 Op Code Address + 2 1 Jump Address {Low Order Byte)
ADC EOR 1 1 Op Code Address 1 Op Code
ADD LDA 2 1 Op Code Address + 1 1 Address of Operand {High Order Byte)
AND ORA 4
BiT SBC 3 1 Op Code Address + 2 1 Address of Operand {Low Order Byte)
CMP SUB 4 1 Address of Operand 1 Operand Data
CcPX 1 1 Op Code Address 1 Op Code
tg)s(2 1 Op Code Address + 1 1 Address of Operand (High Order Byte)
5 3 1 Op Code Address + 2 1 Address of Operand (Low Order Byte)
4 1 Address of Operand 1 Operand Data (High Order Byte)
5 1 Address of Operand + 1 1 Operand Data (Low Order Byte)
STA A 1 1 Op Code Address 1 Op Code
STASB 2 1 Op Code Address + 1 1 Destination Address (High Order Byte)
5 3 1 Op Code Address + 2 1 Destination Address (Low Order Byte)
4 0 Operand Destination Address 1 Irrelevant Data {Note 1)
5 1 Operand Destination Address 0 Data from Accumulator
ASL LSR 1 1 Op Code Address 1 Op Code
éfg ggi 2 1 Op Code Address + 1 1 Address of Operand (High Order Byte)
COM ROR 6 3 1 Op Code Address + 2 1 Address of Operand {Low Order Byte)
II:)NECC TsT 4 1 Address of Operand 1 Current Operand Data
5 o Address of Operand 1 Irrelevant Data (Note 1)
6 1/0 Address of Operand 0 New Operand Data (Note 2)
(Note
2)
Note 1. If device which is addressed during this cycle uses VMA, then the Data Bus will go to the high impedance three-state condition,

Note 2.

Depending on bus capacitance, data from the previous cycle may be retained on the Data Bus.

For TST, VMA = 0 and Operand data does not change.

@ MOTOROLA Semiconductor Products Inc.

28

(PC + 2) + (Offset)

FIGURE 32 — RELATIVE ADDRESSING MODE

MPU MPU

RAM 2AM
Program Program
Memory Memory

PC Instr.
Offset PC 5008 BEQ
(PC + 2)] Next Instr. 15
PC 5010] Next Instr,

e —]

~—~——_

Next Instr.

PC 50251 Next instr,

FIGURE 33 — INDEXED ADDRESSING MODE

L"\—_’_J

-

<_J

MPU MPU
ACCB
-
NDEX
RAM T RAM
ADDR = INDX < : -
+ OFFSET DATA ADDR = 405 59
PROGRAM PROGRAM
MEMORY MEMORY
PC INSTR PC = 5006 LDAB
OFFSET <-_ 5

OFFSET < 255
GENERAL FLOW

EXAMPLE

TABLE 10 — RELATIVE MODE CYCLE-BY-CYCLE OPERATION

Address Mode Cycle | VMA R/W
and Instructions Cycles # Line Address Bus Line Data Bus
BCC BHt BNE 1 1 [Op Code Address 1 |Op Code
BCS BLE BRL s 2 | 1 |OpCode Address + 1 1 |Branch Offset
BGE BLT 8VC 3 0 [Op Code Address + 2 1 |irrelevant Data (Note 1)
BGT BMI BVS 4 0 {Branch Address 1 [Irrelevant Data {(Note 1)
BSR 1 1 |Op Code Address 1 |Op Code
2 1 {Op Code Address + 1 1 |Branch Offset
3 0 {Return Address of Main Program 1 |irrelevant Data (Note 1)
8 4 1 |Stack Pointer 0 |[Return Address (Low Order Byte)
5 1 [Stack Pointer — 1 0 |Return Address (High Order Byte)
6 0 [Stack Pointer — 2 1 |irrelevant Data (Note 1}
7 0 | Return Address of Main Program 1 |Irrelevant Data {Note 1)
8 0 |Subroutine Address 1 |!Irrelevant Data (Note 1)

Note 1. If device which is addressed during this cycle uses VMA, then the Data Bus will go to the high impedance three-state condition.
Depending on bus capacitance, data from the previous cycle may be retained on the Data Bus.

@ MOTOROLA Semiconductor Products Inc.

29

TABLE 11 — INDEXED MODE CYCLE-BY-CYCLE

Address Mode Cycle | VMA R/W
and Instructions Cycles # Line Address Bus Line Data Bus
INDEXED
JMP 1 1 Op Code Address 1 Op Code
4 2 1 Op Code Address + 1 1 Offset
3 0 Index Register 1 Irrelevant Data (Note 1)
4 0 index Register Plus Offset (w/o Carry) 1 Irrelevant Date (Note 1)
ADC EOR 1 1 Op Code Address 1 Op Code
ARD S 2 | 1 | OpCode Address + 1 1 | Offset
BIT SBC 5 3 0 Index Register 1 irrelevant Data (Note 1}
CMP sus 4 0 Index Register Plus Offset (w/o Carry) 1 irrelevant Data {(Note 1}
5 1 Index Register Plus Offset 1 Operand Data
CPX 1 1 Op Code Address 1 Op Code
ll:B)S(2 1 Op Code Address + 1 1 Offset
8 3 0 Index Register 1 Irrelevant Data (Note 1)
4 o} Index Register Plus Offset {w/o Carry) 1 trrelevant Data (Note 1}
5 1 Index Register Plus Offset 1 Operand Data (High Order Byte)
6 1 index Register Plus Offset + 1 1 Operand Data {Low Order Byte)
STA 1 1 Op Code Address 1 Op Code
2 1 Op Code Address + 1 1 Offset
6 3 0 Index Register 1 Irrelevant Data (Note 1)
4 0 Index Register Plus Offset {w/o Carry) 1 Irrelevant Data {Note 1)
5 0 Index Register Plus Offset 1 Irrelevant Data (Note 1)
6 1 index Register Plus Offset 0 Operand Data
ASL LSR 1 1 Op Code Address 1 Op Code
éig ';g?_ 2 1 Op Code Address + 1 1 Offset
g(é)lc\:/l SO 7 3 0 Index Register 1 Irrelevant Data {Note 1)
INC 4 0 Index Register Plus Offset {w/o Carry) 1 Irrelevant Data (Note 1)
5 1 Index Register Ptus Offset 1 Current Operand Data
6 0 Index Register Plus Offset 1 Irrelevant Data (Note 1)
7 1/0 Index Register Plus Offset 0 New Operand Data (Note 2)
(Note
2)
STS 1 1 Op Code Address 1 Op Code
STX 2 1 Op Code Address + 1 1 Offset
7 3 0 Index Register 1 Irrelevant Data (Note 1)
4 0 Index Register Plus Offset (w/o Carry) 1 Irrelevant Data {Note 1)
5 0 Index Register Plus Offset 1 Irretevant Data (Note 1)
6 1 Index Register Plus Offset 0 Operand Data {High Order Byte)
7 1 Index Register Plus Offset + 1 0 Operand Data (Low Order Byte)
JSR 1 1 Op Code Address 1 Op Code
2 1 Op Code Address + 1 1 Offset
3 o] Index Register 1 Irrelevant Data (Note 1)
8 4 1 Stack Pointer o} Return Address {Low Order Byte)
5 1 Stack Pointer — 1 0 Return Address (High Order Byte)
6 0 Stack Pointer — 2 1 Irrelevant Data {Note 1)
7 0 Index Register 1 Irrelevant Data (Note 1)
8 0 Index Register Plus Offset (w/o Carry) 1 Irrelevant Data (Note 1}
Note 1. If device which is addressed during this cycle uses VMA, then the Data Bus will go to the high impedance three-state condition.
Depending on bus capacitance, data from the previous cycle may be retained on the Data Bus.
Note 2. For TST, VMA = 0 and Operand data does not change.

MOTOROLA Semiconductor Products Inc.

30

PACKAGE DIMENSIONS

ﬁﬁﬁﬁﬁﬁhﬁﬁﬁﬁﬁﬁﬁhhﬁﬂrz‘?
40

1 20
VUV VLU UU TP ULNUVLVUTUULUY

CASE 734-04

(CERDIP)
' A
| _
{ N MILLIMETERS| _ INCHES
DIM[MIN | MAX | MIN | MAX NOTES:
= A {5131 53.24 | 2.020 | 2.095 1. DIM -A- ISBATUM
) | L_ v B {1270 1549 | 0.500 [0.610 2. POSITHUNAL TOLERANCE FDR LEADS:
K. C | 406 | 584 | 0.160 | 0.230 {¢{e0 2500 @[T|A®
ol Al o #les25000 O] T[A0)
e D | 038 | 0.56 | 0.015 | 0.022 309 1S SEATING PLANE.
F | 127} 165 | 0.050 | 0.0B5 4 BIML T CENTER OF LEADS WHEN
G 254 8SC 0.100BSC FORMED PARALLEL.
J | 020] 030] 0008 poiz’ . UIMENSIONS A AND B INCLUDE
« [58] a06 | 0125] 0150 ; § EIEMNEIEI%LIJUSMNG AND TOLERANGING
L | 1524BSC 0.600 8SC
W5] 15 PER ANSI Y14 5, 1973,
N | o5 27
Qﬁﬁﬁﬁhhhhhﬁﬁl"lﬁﬁhﬁf\l"lg _T
D B CASE 711-03
(PLASTIC)
© 20
VU U UL U UUUY U UL
; A
'
|
MILLIMETERS| INCHES
|DIM[TRIN | MAX | MIN | MAX
L A | 51,69 | 52.45] 2.035] 2.065 NOTES:
J Ul B 11372 [14.22 | 0.540 | 0.560 1. POSITIONAL TOLERANCE OF LEADS (D),
—dul— dgl— F wlL 3 < | 508 | 0.155] 0,200 SHALL BE WITHIN 0.25 mm (0.010) AT
D
D 3 .56 7 0.014 | 0.022 MAXIMUM MATERSAL CONDBITION, IN
F 2 [1.52 | 0.040 | 0.060 RELATION TO SEATING PLANE AND
g 2.54 BSC 0.100 8SC EACH DTHER,
[H] 165] 216]0065] 0.085 2. DIMENSION L TO CENTER OF LEADS
J [070 | 0.38 [0.008] 00T WHEN- FORMED PARALLEL.
K[297 [343 [DIT5] 0135 | 3 DIMENSION B DOES NOT INCLUDE
L 15.24 BSC 0.500 8SC MOLD FLASH.
M | 99 T80 00 150
N 7051 | 1.82 [0.020 | 0,040
CASE 715-05
(CERAMIC)
MILLIMETERS INCHES NDTES
DIM [MIN_TMAX | MIN T MAX 1. DIMENSIONCA] IS DATUM.
[A 5029 5131 | 1.880 | 2.020 | 2. POSITIONAL TOLERANCE FOR LEADS
14,63 | 15.49 | U576 | 0.610
PRi 3210010] 0.1 .25 0.00 [ac)
0.3 53] 0.015 | 0,027 @lozs 00w @lT
.71 .52 | 0.030 [0.060 - IS SEATING PLANE.
I G_| 254BS 0.700 BSC 4. DIMENSION “t” TO CENTER OF LEADS
M—| J | 0.20] 0.33 0-“93_ 0.013 WHEN FORMED PARALLEL
'f 15-;‘; T%%;g_v“%r L) 5. DIMENSIONING AND TOLERANCING
W T T = T PER ANSI Y14.5, 1973,
N | 102 | 1.52 | 0.040] 0.080

Motorola reserves the right to make changes to any products herein to improve reliability, function or design. Motorola does not assume any liability arising
out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.

31

MOTOROLA Semiconductor Products Inc.

— @ MOTOROLA Semiconductor Products Inc.

3501 ED BLUESTEIN BLVD., AUSTIN, TEXAS 78721 ¢ A SUBSIDIARY OF MOTOROLA INC.

