
8-BIT MICROPROCESSING UNIT (MPU)

The MC6800 is a monolithic 8-bit microprocessor forming the central
control function for Motorola's M6800 family. Compatible with TTL, the
MC6800, as with all M6800 system parts, requires only one + 5.0-volt
power supply, and no external TTL devices for bus interface.

The MC6800 is capable of addressing 64K bytes of memory with its
16-bit address lines. The 8-bit data bus is bidirectional as well as three­
state, making direct memory addressing and multiprocessing applica­
tions realizable.

• 8-Bit Parallel Processing

• Bidirectional Data Bus
• 16-Bit Address Bus - 64K Bytes of Addressing

• 72 Instructions - Variable Length
• Seven Addressing Modes - Direct, Relative, Immediate, Indexed,

Extended, Implied and Accumulator

• Variable Length Stack
• Vectored Restart

• Maskable Interrupt Vector
• Separate Non-Maskable Interrupt - Internal Registers Saved in

Stack
• Six Internal Registers - Two Accumulators, Index Register,

Program Counter, Stack Pointer and Condition Code Register

• Direct Memory Addressing {OMA) and Multiple Processor
Capability

• Simplified Clocking Characteristics

• Clock Rates as High as 2.0 MHz

• Simple Bus Interface Without TTL
• Halt and Single Instruction Execution Capability

ORDERING INFORMATION

Package Type Frequency (MHz) Temperature Order Number

Ceramic 1.0 ooc to 70°C MC6800L
L Suffix 1.0 -40°C to 85°C MC6800CL

1.5 ooc to 70°C MC68AOOL
1.5 - 40°C to 85°C MC68AOOCL
2.0 ooc to 70°C MC68BOOL

Cerdip 1.0 ooc to 70°C MC6800S

S Suffix 1.0 -40°C to 85°C MC6800CS
1.5 ooc to 70°C MC68AOOS
1.5 -40°C to 85°C MC68AOOCS
2.0 ooc to 70°C MC68BOOS

Plastic 1.0 ooc to 70°C MC6800P

P Suffix 1.0 -40°C to 85°C MC6800CP
1.5 ooc to 70°C MC68AOOP
1.5 - 40°C to 85°C MC68AOOCP
2.0 ooc to 70°C MC68BOOP

MC6800

MOS
(N-CHANNEL, SILICON-GATE,

DEPLETION LOAD)

MICROPROCESSOR

S SUFFIX
CERDIP PACKAGE

CASE 734

P SUFFIX
PLASTIC PACKAGE

CASE 711

L SUFFIX
CERAMIC PACKAGE

CASE 715

PIN ASSIGNMENT

Vss RESET

HALT

</>1 N.C.

IRQ </12

VMA DBE

NMI N.C.

BA R/W

Vee DO

AC D1

A1 02

A2 D3

A3 04

A4 D5

A5 06

A6 07

A? A15

AS A14

A9 A13

A10 A12

A11 Vss

©MOTOROLA INC., 1984 DS9471-R2

MAXIMUM RATINGS

Rating Symbol Value Unit

Supply Voltage Vee -0.3 to + 7.0 v

Input Voltage Vin -0.3to+7.0 v

Operating Temperature Range TL to TH
MC6800, MC68AOO, MC68BOO TA 0 to + 70 oc

M C6800C, M C68AOOC -40 to +85

Storage Temperature Range Tstg -55 to+ 150 oc

THERMAL RESISTANCE

Rating Symbol Value Unit

Plastic Package 100
Cerdip Package BJA 60 °C/W
Ceramic Package 50

POWER CONSIDERATIONS

The average chip-junction temperature, T J, in oc can be obtained from:

TJ=TA+Wo•OJA)

Where:

TA=Ambient Temperature, °C

OJA= Package Thermal Resistance, Junction-to-Ambient, °C/W

Po= PiNT+ PPORT

PiNT= Icc x Vee, Watts - Chip Internal Power

PpQRT= Port Power Dissipation, Watts - User Determined

This device contains circuitry to protect the
inputs against damage due to high static
voltages or electrical fields; however, it is ad­
vised that normal precautions be taken to
avoid application of any voltage higher than
maximum-rated voltages to this high­
impedance circuit. Reliability of operation is
enhanced if unused inputs are tied to an ap­
propriate logic voltage (e.g., either Vss or
Vccl.

(1)

For most applications PpQRT<IfiPINT and can be neglected. PPORT may become significant if the device is configured to
drive Darlington bases or sink LED loads.

An approximate relationship between Po and T J (if PPORT is neglected) is:

Po=K+(TJ+273°C) (2)

Solving equations 1 and 2 for K gives:

K =Po • (T A +273°C) +OJA • Po2 (3)

Where K is a constant pertaining to the particular part. K can be determined from equation 3 by measuring Po (at equilibrium)
for a known T A· Using this value of K the values of Po and T J can be obtained by solving equations (1) and (2) iteratively for any
value ofT A-

DC ELECTRICAL CHARACTERISTICS !Vcc=5.0 Vdc, ±5%, Vss=O, TA=TL to TH unless otherwise noted)

Characteristic Symbol Min Typ Max Unit

Input High Voltage Logic VIH Vss+2.o - vee v
r/>1, r/>2 VIHC Vcc-0.6 - Vcc+0.3

Input Low Voltage Logic VIL Vss-o.3 - Vss+O.s v
r/>1, ¢2 VILC Vss-o.3 - Vss+0.4

Input Leakage Current
(Vin =0 to 5.25 V, Vee= Max) Logic lin - 1.0 2.5 p.A
(Vin=O to 5.25 V, Vcc=O V to 5.25 Vl ¢1,¢2 - - 100

Hi-Z Input Leakage Current D0-07
11z

- 2.0 10
p.A

!Vin=0.4to2.4V, Vcc=Maxl AO-A15, R/W - - 100

Output High Voltage
IILoad= -205p.A, Vee= Min) D0-07

VoH
Vss+2.4 - -

v
liLoad= -145p.A, Vee= Minl AO-A15, R/W, VMA Vss+2.4 - -
(ILoad= -100p.A, Vee= Min) BA Vss+2.4 - -

Output Low Voltage (I Load -1.6 mA, Vee= Min) VoL - - Vss+0.4 v

Internal Power Dissipation (Measured at T A= TLl PINT - 0.5 1.0 w
Capacitance

(Vin = 0, T A= 25°C, f= 1.0 MHzl r/>1 - 25 35
r/>2 Cin - 45 70 pF

D0-07 - 10 12.5
Logic Inputs - 6.5 10

AO-A15, R/W, VMA Cout - - 12 pF

...__ _____ @ MOTOROLA Semiconductor Products Inc.
2

CLOCK TIMING !Vcc=5.0 V, ±5%, Vss=O, TA=TL to TH unless otherwise noted)

Characteristic Symbol Min Typ Max Unit

Frequency of Operation MC6800 0.1 - 1.0
MC68AOO f 0.1 - 1.5 MHz
MC68BOO 0.1 - 2.0

Cycle Time !Figure 1) MC6800 1.000 - 10
MC68AOO tcyc 0.666 - 10 p.S

MC68BOO 0.500 - 10

Clock Pulse Width r/>1, r/>2 - MC6800 400 - 9500
(Measured at Vee- 0.6 V) r/>1, r/>2- MC68AOO PWrpH 230 - 9500 ns

r/>1,¢2- MC68BOO 180 - 9500

Total rp1 and r/>2 Up Time MC6800 900 - -

MC68AOO lut 600 - - ns
MC68BOO 440 - -

Rise and Fall Time (Measured between Vss + 0.4 and Vee- 0.6) tr, lf - - 100 ns

Delay Time or Clock Separation (Figure 1)
!Measured at Vov= Vss +0.6 V@tr= tp;; 100 ns) ld 0 - 9100 ns
!Measured at Vov = Vss + 1.0 V@tr= lf:S35 nsl 0 - 9100

FIGURE 1 - CLOCK TIMING WAVEFORM

I. t-_,,:--==~t~~:t -'

-
t¢r- PWrpH ---j '- trpt

I I

¢1 @'"c \ ~v v
~ c

td --1 td k--

</>2 j:IHC 11 =1t VILC
Vov

t¢r ~ L PW<J>H . \-- trpt

NOTES:
1. Voltage levels shown are VL,s0.4, VH~2.4 V, unless otherwise specified.

2. Measurement points shown are 0.8 V and 2.0 V, unless otherwise noted.

READ/WRITE TIMING !Reference Figures 2 through 6, 8, 9, 11, 12 and 131

MC6800 MC68AOO MC68BOO
Characteristic Symbol

Max Typ
Unit

Min Typ Min Typ Max Min Max

Address Delay
c=oo pF lAD - - 270 - - 180 - - 150 ns
C=30 pF - - 250 - - 165 - - 135

Peripheral Read Access Time
lace 605 - - 400 - - 290 - - ns

tacc=tut- !tAD+ tDSR)

Data Setup Time I Read) lDSR 100 - - 60 - - 40 - - ns

Input Data Hold Time tH 10 - - 10 - - 10 - - ns

Output Data Hold Time tH 10 25 - 10 25 - 10 25 - ns

Address Hold Time !Address, R/W, VMAl lAH 30 50 - 30 50 - 30 50 - ns

Enable High Time for DBE Input lEH 450 - - 280 - - 220 - - ns

Data Delay Time !Write) lDDW - - 225 - - 200 - - 160 ns

Processor Controls
Processor Control Setup Time tpcs 200 - - 140 - - 110 - -

Processor Control Rise and Fall Time tpcr. tpcf - - 100 - - 100 - - 100
Bus Available Delay lBA - - 250 - - 165 - - 135

ns
Hi~Z Enable tTsE 0 - 40 0 - 40 0 - 40
Hi~Z Delay lTSD - - 270 - - 270 - - 220
Data Bus Enable Down Time During ¢1 Up Time lDBE 150 - - 120 - - 75 - -
Data Bus Enable Rise and Fall Times lDBEr· lDBEf - - 25 - - 25 - - 25

. @ MOTOROLA ~emtconductor Products Inc .

</>2

R/W

Address
From MPU

FIGURE 2 - READ DATA FROM MEMORY OR PERIPHERALS

/ Start of Cycle

Data -----~------------------------------~2:.~o~v~~~~~~~~~~ From Memory
or Peripherals

~Data Not Valid

FIGURE 3 - WRITE IN MEMORY OR PERIPHERALS

_,..-- Start of Cycle

~-----------------------tcyc----------------------~

R/W

Address

FromMPU~~~~~~~--~-r~------------------------------------~~~

~------------tEH------------~~

DBE

Data
From MPU Data Valid

t;\\ ~\\\j Data Not Valid

NOTES:
1. Voltage levels shown are VL:S0.4, VH~2.4 V, unless otherwise specified.

2. Measurement points shown are 0.8 V and 2.0 V, unless otherwise noted .

....___ _____ ({!) MOTOROLA ~emiconductor Products Inc.

FIGURE 4- TYPICAL DATA BUS OUTPUT DELAY
versus CAPACITIVE LOADING (TDDW)

6oo~~---.--~-.---.--.---.--.---.--.--.~-.

I 0 H =-205 }lA max@ 2.4 V

500

I 0 L = 1.6 rnA max@ 0.4 V -+--+--+--+--+--+--t-----1
vee = 5.o v
lA = 25°C

100~~-~--+--+--4-~---r--r--+--+-~--4-~
CL includes stray capacitance

oL-~---L--~--~~--~--~~--~--~--~-J
600 0 100 200 300 400 500

CL. LOAD CAPACITANCE (pF)

~
LU
::;:
>=
>-
<!
-'
LU
D

FIGURE 5 - TYPICAL READ/WRITE, VMA, AND ADDRESS
OUTPUT DELAY versus CAPACITIVE LOADING (TAD)

600

500

400

300

200

100

0

loH =-145 }lA max@ 2.4 V
I 0 L = 1.6 rnA max@ 0.4 V -t--t--t--t--t----1--+----1
Vee = 5.o v
TA = 25°C

~---1----1---t---r--~--4---+-~~VMA_-+--~--~

t---t---+---t----t---t--:~t""'~'---t--!----=--1- Addr'ess. R /W --+-------1
--~--~--r-

C L includes stray capacitance

0 100 200 300 400 500 600

CL, LOAD CAPACITANCE (pF)

FIGURE 6 - BUS TIMING TEST LOADS

Q Vee

RL=2.2 kS1

Test Point o-----41~----+~·-.... MMD6150

1 p or Equiv.

C f' R ~· MMD 7000

r or Equiv.

C = 130 pF for D0-07, E

= 90 pF for AO-A15. R/W, and VMA

(Except tAo 2 1
= 30 pF for AO-A15, RtW. and VMA

(tAD2 only)

= 30 pF for BA

R= 11.7kHforDO-D7

= 16.5 k£2 for AO-A15, R/W, and VMA

= 24 k£2 for BA

TEST CONDITIONS

The dynamic test load for the Data Bus is

130 pF and one standard TTL load as shown.

The Address, R/W, and VMA outputs are tested

under two conditions to allow optimum opera­
tion in both buffered and unbuffered systems.

The resistor (R) is chosen to insure specified

load currents during VoH measurement.

Notice that the Data Bus lines, the Address

lines, the Interrupt Request line, and the DBE

I ine are all specified and tested to guarantee

0.4 V of dynamic noise immunity at both
"1" and "0" logic levels.

.._________@ MOTOROLA Semiconductor Products Inc.
5

MC£800 , 0 , 0 0 0 c ~ ,, : • , : , ·< '(·~c ·.::·<'~
- " - "" -" ~ ~

" ~ - 4- c "' "- ' "'~ 01 ~ ~ ~;)' '' • -;}: "' c ~ "'"""~~"'""'" =~~~"' "'"" "--J~" """"- ·"'

Clock, </>1

Clock, <1>2

RESET

Non-Maskable Interrupt

HALT

Interrupt Request

Three-State Control

Data Bus Enable

Bus Available

Valid Memory Address

Read/Write, R/W

Vcc=Pin 8
Vss=Pins 1, 21

3

37

40

6

2

4

39

36

7

5

34

FIGURE 7 - EXPANDED BLOCK DIAGRAM

A15 A14 A13 A12 A11 A10 A9 A8
25 24 23 22 20 19 18 17

Instruction
Decode

and
Control

Output
Buffers

Data
Buffer

Program
Counter

H

Stack
Pointer H

Index
Register H

26 27 28 29 30 31 32
07 06 D5 D4 D3 D2 01

33
DO

A7
16

A6 A5
15 14

A4 A3 A2 A1
13 12 11 10

Output
Buffers

@ MOTOROLA ~emiconductor Products Inc.

AO
9

; -:' _I f ~, : r ~ jl ~ c ~"f. ~)- f ~ ~ f I I "'' ~ ~

' _ MCPSOO - , -" :(< ,; J *

MPU SIGNAL DESCRIPTION

Proper operation of the MPU requires that certain control
and timing signals be provided to accomplish specific func­
tions and that other signal lines be monitored to determine
the state of the processor.

Clocks Phase One and Phase Two (1/>1, 1/>2) - Two pins
are used for a two-phase non-overlapping clock that runs at
the Vee voltage level.

Figure 1 shows the microprocessor clocks. The high level
is specified at VIHC and the low level is specified at VJLC.
The allowable clock frequency is specified by f (frequency).
The minimum 1/>1 and 1/>2 high level pulse widths are specified
by PWI/>H (pulse width high time). To guarantee the required
access time for the peripherals, the clock up time, tut. is
specified. Clock separation, td, is measured at a maximum
voltage of Vov (overlap voltage). This allows for a multitude
of clock variations at the system frequency rate.

Address Bus (AO-A15) - Sixteen pins are used for the ad­
dress bus. The outputs are three-state bus drivers capable of
driving one standard TTL load and 90 pF. When the output is
turned off, it is essentially an open circuit. This permits the
MPU to be used in DMA applications. Putting TSC in its high
state forces the Address bus to go into the three-state mode.

Data Bus (DO-D7) - Eight pins are used for the data bus.
It is bidirectional, transferring data to and from the memory
and peripheral devices. It also has three-state output buffers
capable of driving one standard TTL load and 130 pF. Data
Bus is placed in the three-state mode when DBE is low.

Data Bus Enable (DBE) - This level sensitive input is the
three-state control signal for the MPU data bus and will
enable the bus drivers when in the high state. This input is
TTL compatible; however in normal operation, it would be
driven by the phase two clock. During an MPU read cycle,
the data bus drivers will be disabled internally. When it is
desired that another device control the data bus, such as in
Direct Memory Access (DMA) applications, DBE should be
held low.

If additional data setup or hold time is required on an M PU
write, the DBE down time can be decreased, as shown in
Figure 3 (DBE*I/>2l. The minimum down time for DBE is
tDBE as shown By skewing DBE with respect to E, data
setup or hold time can be increased.

Bus Available (BA) - The Bus Available signal will nor­
mally be in the low state; when activated, it will go to the
high state indicating that the microprocessor has stopped
and that the address bus is available. This will occur if the
HALT line is in the low state or the processor is in the WAIT
state as a result of the execution of a WAIT instruction. At
such time, all three-state output drivers will go to their off
state and other outputs to their normally inactive level. The
processor is removed from the WAIT state by the occurrence
of a maskable (mask bit I= 0) or nonmaskable interrupt. This
output is capable of driving one standard TTL load and
30 pF. If TSC is in the high state, Bus Available will be low.

Read/Write (R/W) - This TTL compatible output signals
the peripherals and memory devices wether the MPU is in a

Read (high) or Write (low) state. The normal standby state of
this signal is Read (high). Three-State Control going high will
turn Read/Write to the off (high impedance) state. Also,
when the processor is halted, it will be in the off state. This
output is capable of driving one standard TTL load and
90 pF.

RESET - The RESET input is used to reset and start the
MPU from a power down condition resulting from a power
failure or initial start-up of the processor. This level sensitive
input can also be used to reinitialize the machine at any time
after start-up.

If a high level is detected in this input, this will signal the
M PU to begin the reset sequence. During the reset se­
quence, the contents of the last two locations (FFFE, FFFF)
in memory will be loaded into the Program Counter to point
to the beginning of the reset routine. During the reset
routine, the interrupt mask bit is set and must be cleared
under program control before the MPU can be interrupted by
IRQ. While RESET is low (assuming a minimum of 8 clock
cycles have occurred) the MPU output signals will be in the
following states: VMA= low, BA= low, Data Bus= high im­
pedance, R/W =high (read state), and the Address Bus will
contain the reset address FFFE. Figure 8 illustrates a power
up sequence using the RESET control line. After the power
supply reaches 4.75 V, a minimum of eight clock cycles are
requ·1red for the processor to stabilize in preparation for
restarting. During these eight cycles, VMA will be in an in­
deter.minate state so any devices that are enabled by VMA
which could accept a false write during this time (such as
battery-backed RAM) must be disabled until VMA is forced
low after eight cycles. RESET can go high asynchronously
with the system clock any time after the eighth cycle.

RESET timing is shown in Figure 8. The maximum rise and
fall transition times are specified by tPCr and tpcf. If RESET
is high at tpcs (processor control setup time), as shown in
Figure 8, in any given cycle then the restart sequence will
begin on the next cycle as shown. The RESET control line
may also be used to reinitialize the MPU system at any time
during its operation. This is accomplished by pulsing RESET
low for the duration of a minimum of three complete 1/>2
cycles. The RESET pulse can be completely asynchronous
with the MPU system clock and will be recognized during 1/>2
if setup time tpcs is met.

Interrupt Request (IRQ) - This level sensitive input re­
quests that an interrupt sequence be generated within the
machine. The processor will wait until it completes the cur­
rent instruction that is being executed before it recognizes
the request. At that time, if the interrupt mask bit in the Con­
dition Code Register is not set, the machine will begin an in­
terrupt sequence. The Index Register, Program Counter, Ac­
cumulators, and Condition Code Register are stored away on
the stack. Next, the M PU will respond to the interrupt re­
quest by setting the interrupt mask bit high so that no further
interrupts may occur. At the end of the cycle, a 16-bit ad­
dress will be loaded that points to a vectoring address which
is located in memory locations FFF8 and FFF9. An address
loaded at these locations causes the MPU to branch to an in­
terrupt routine in memory. Interrupt timing is shown in
Figure 9.

~..,__ _____ @ MOTOROLA Semiconductor Products Inc.
7

@
I
0
a
:JJ

~
~

co ('J)
~

3 n·
0
:::2

~
(')

0 .., ,
a
~
(')

Cit -:::2
~

FIGURE 8 - RESET TIMING

PC 8-15 PC 0-7 First

B A &\\\\\\\\\\\\\\\\\\\\\\\\\~~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Instruction

K\\\\\\1 ~ Indeterminate

Address
Bus

IRQ or

Interrupt

Cycle
#1 #2

FIGURE 9 - INTERRUPT TIMING

#3 #4 "5 'it7 #9 1 #1 o 1 #11 1 #1 2 1 #13 1 #14 1 #1 5

Mask --+-------J
Data Bus ____ _,

lnst (xI PC0-7 PC8-15 X0-7 X8-15 ACCA ACCB CCR New PC 8-15 New PC 0-7
1
First lnst of

Address Address Interrupt Routine

R!W

VMA

The HALT line must be in the high state for interrupts to
be serviced. Interrupts will be latched internally while HALT
is low.

The IRQ has a high-impedance pullup device internal to
the chip; however, a 3 kO external resistor to Vee should be
used for wire-OR and optimum control of interrupts.

Non-Maskable Interrupt (NMI) and Wait for Interrupt
(WAll - The MC6800 is capable of handling two types of in­
terrupts: maskable (IRQ) as described earlier, and non­
maskable (NMI) which is an edge sensitive input. IRQ is
maskable by the interrupt mask in the condition code register
while NMI is not maskable. The handling of these interrupts
by the MPU is the same except that each has its own vector
address. The behavior of the MPU when interrupted is
shown in Figure 9 which details the MPU response to an in­
terrupt while the MPU is executing the control program. The
interrupt shown could be either IRQ or NMI and can be asyn­
chronous with respect to c/>2. The interrupt is shown going
low at time tpcs in cycle #1 which precedes the first cycle of
an instruction (OP code fetch). This instruction is not ex­
ecuted but instead the Program Counter (PC), Index
Register (IX), Accumulators (ACCX), and the Condition
Code Register (CCR) are pushed onto the stack.

The Interrupt Mask bit is set to prevent further interrupts.
The address of the interrupt service routine is then fetched
from FFFC, FFFD for an NMI interrupt and from FFF8, FFF9
for an IRQ interrupt. Upon completion of the interrupt ser­
vice routine, the execution of RTI will pull the PC, IX, ACCX,
and CCR off the stack; the Interrupt Mask bit is restored to
its condition prior to Interrupts (see Figure 10).

Figure 11 is a similar interrupt sequence, except in this
case, a WAIT instruction has been executed in preparation
for the interrupt. This technique speeds up the MPU's
response to the interrupt because the stacking of the PC, IX,
ACCX, and the CCR is already done. While the MPU is
waiting for the interrupt, Bus Available will go high in­
dicating the following states of the control lines: VMA is low,
and the Address Bus, R/W and Data Bus are all in the high
impedance state. After the interrupt occurs, it is serviced as
previously described.

A 3-10 kO external resistor to Vee should be used for wire­
OR and optimum control of interrupts.

MEMORY MAP FOR INTERRUPT VECTORS

Vector Description
MS LS

FFFE r---f_FF_F Reset
~~

Non-Maskable Interrupt FFFC FFFD
FFFA FFFB Software Interrupt
FFF8 FFF9 Interrupt Request

Refer to Figure 10 for program flow for Interrupts.

Three-State Control (TSC) - When the level sens1t1ve
Three-State Control (TSC) line is a logic "1", the Address
Bus and the R/W line are placed in a high-impedance state.
VMA and BA are forced low when TSC= "1" to prevent
false reads or writes on any device enabled by VMA. It is
necessary to delay program execution while TSC is held
high. This is done by insuring that no transitions of cf> 1 (or c/>2)
occur during this period. (Logic levels of the clocks are irrele­
vant so long as they do not change). Since the MPU is a
dynamic device, the cf> 1 clock can be stopped for a maximum

time PWcf>H without destroying data within the MPU. TSC
then can be used in a short Direct Memory Access (DMA)
application.

Figure 12 shows the effect of TSC on the MPU. TSC must
have its transitions at tTSE (three-state enable) while holding
c/>1 high and c/>2 low as shown. The Address Bus and R/W
line will reach the high-impedance state at tTSD (three-state
delay), with VMA being forced low. In this example, the
Data Bus is also in the high-impedance state while c/>2 is be­
ing held low since DBE = c/>2. At this point in time, a DMA
transfer could occur on cycles #3 and #4. When TSC is
returned low, the MPU Address and R/W lines return to the
bus. Because it is too late in cycle #5 to access memory, this
cycle is dead and used for synchronization. Program execu­
tion resumes in cycle #6.

Valid Memory Address (VMA) - This output indicates to
peripheral devices that there is a valid address on the address
bus. In normal operation, this signal should be utilized for
enabling peripheral interfaces such as the PIA and ACIA.
This signal is not three-state. One standard TTL load and
90 pF may be directly driven by this active high signal.

HALT- When this level sensitive input is in the low state,
all activity in the machine will be halted. This input is level
sensitive.

The HALT line provides an input to the MPU to allow con­
trol of program execution by an outside source. If HALT is
high, the MPU will execute the instructions; if it is low, the
MPU will go to a halted or idle mode. A response signal, Bus
Availaole (BA) provides an indication of the current MPU
status. When BA is low, the MPU is in the process of ex­
ecuting the control program; if BA is high, the MPU has
halted and all internal activity has stopped.

When BA is high, the Address Bus, Data Bus, and R/W
line will be in a high-impedance state, effectively removing
the MPU from the system bus. VMA is forced low so that the
floating system bus will not activate any device on the bus
that is enabled by VMA.

While the MPU is halted, all program activity is stopped,
and if either an NMI or IRQ interrupt occurs, it will be latched
into the MPU and acted on as soon as the MPU is taken out
of the halted mode. If a RESET command occurs while the
MPU is halted, the following states occur: VMA =low,
BA=Iow, Data Bus=high impedance, R/W=high (read
state), and the Address Bus will contain address FFFE as
long as RESET is low. As soon as the RESET line goes high,
the MPU will go to locations FFFE and FFFF for the address
of the reset routine.

Figure 13 shows the timing relationships involved when
halting the MPU. The instruction illustrated is a one byte, 2
cycle instruction such as CLRA. When HALT goes low, the
MPU will halt after completing execution of the current in­
struction. The transition of HALT must occur tpcs before
the trailing edge of c/>1 of the last cycle of an instruction
(point A of Figure 13). HALT must not go low any time later
than the minmum tpcs specified.

The fetch of the OP code by the MPU is the first cycle of
the instruction. If HALT had not been low at Point A but
went low during c/>2 of that cycle, .the MPU would have
halted after completion of the following instruction. BA will
go high by time tBA (bus available delay time) after the last
instruction cycle. At this point in time, VMA is low and R/W,
Address Bus, and the Data Bus are in the high-impedance
state.

L-------@ MOTOROLA Semiconductor Products Inc.
9

MC6800 ~ - - ~ -.. . ·.. . _ .. - . · . . . ·: .. · . . ·: . : .. · ·: · ,
. . .

"' - ~ "'• =" ~ : ~ -,., - ~ i ~-v - ~ ' ~ ~- ,~~ ':;; ~ :C "~J "_ ;o~. ~ = ~:t"' _ ;:::,_

To debug programs it is advantageous to step through
programs instruction by instruction. To do this, HALT must
be brought high tor one M PU cycle and then returned low as
shown at point B of Figure 13. Again, the transitions of
HALT must occur tpcs before the trailing edge of cf>1. BA
will go low at tBA after the leading edge of the next ct>1, in­
dicating that the Address Bus, Data Bus, VMA and R/W

lines are back on the bus. A single byte, 2 cycle instruction
such as LSR is used tor this example also. During the first cy­
cle, the instruction Y is fetched from address M + 1. BA
returns high at tBA on the last cycle of the instruction in­
dicating the MPU is ott the bus. It instruction Y had been
three cycles, the width of the BA low time would have been
increased by one cycle.

FIGURE 10 - MPU FLOWCHART

Condition Code Register

Notes:
1. Reset is recognized at any position in the flowchart.
2. Instructions which affect the 1-Bit act upon a one-bit buffer register,

"ITMP." This has the effect of delaying any CLEARING of the 1-Bit one
clock time. Setting the 1-Bit, however, is not delayed.

3. See Tables 6-11 for details of Instruction Execution .

.___ _____ @ MOTOROLA Semiconductor Products Inc.
10

)

C/>2

Address
Bus

@ R/W

VMA

~
Interrupt
Mask

IRQ or

a
NMI

Data Bus

~
BA

~
(I)

~ c;·
0
~

2-
(')

0 ..., ,
a
~
Cit
5'
r>

Cycle
#1 #2 #3 #4

Instruction SP(n) SP(n-1)

f...
Wait
lnst

Note:

rx
PC 0-7 PC 8-15

Midrange waveform indicates
hogh Impedance state.

System
rp1

MPU </>1

R/W

VMA

Daw
Bus

1[!2 = DBE

TSC

Cycle
#1

#5

SP(n-2)

I 0-7

))

FIGURE 11 -WAIT INSTRUCTION TIMING

#6 #7 #8 #9 #10 n I n+1 I n+2 I n+3 l n+4 l n+5 I

ew
Ad~

II J 'X II

SP(n-3) SP(n-4) SP(n-5) SP(n-6) SP(n-7) FFF8 FFF9
Jt
II

First lnst
'Ill of Interrupt

' \ Routine,

JCJ f---1 ~tpcs (~
X X X X X X

I 8-15 ACCA ACCB CCR New PC 8-15 New PC 0-7

HI \
Address Address

- ~TBA

FIGURE 12 - THREE-STATE CONTROL TIMING

'"7 =8

~ '0 ,-., n' <0 ~ ~ ~ ~

' <~ w y

MC6800 , , , ,
C:" > ~ C "- ' - S L '< - v'

FIGURE 13- HALT AND SINGLE INSTRUCTION EXECUTION FOR SYSTEM DEBUG

I

I nstruction II nstruction I
Fetch Execute

<P2

Halt

BA

VMA ==x _ ___.rY'-.L---'...l....------~ 1---------.J

RiW ~ 0......._.._______,>--------l{ft------/ '<:.._ __ __,>-
Address
Bus

__ _.,)>-------~{,~1 -------<(Addr ,M + 1X.._ ___ ..;}-
Data
Bus

lnst
X

Note: Midrange waveform indicates
high impedance state.

lnst
y

MPU REGISTERS

The MPU has three 16-bit registers and three 8-bit
registers available for use by the programmer (Figure 14).

Program Counter - The program counter is a two byte
(16 bits) register that points to the current program address.

Stack Pointer - The stack ponter is a two byte register
that contains the address of the next available location in an
external push-down/pop-up stack. This stack is normally a
random access Read/Write memory that may have any loca­
tion (address) that is convenient. In those applications that
require storage of information in the stack when power is
lost, the stack must be nonvolatile.

Index Register - The index register is a two byte register
that is used to store data or a sixteen bit memory address for
the Indexed mode of memory addressing.

Accumulators - The MPU contains two 8-bit ac­
cumulators that are used to hold operands and results from
an arithmetic logic unit (ALU).

Condition Code Register - The condition code register in­
dicates the results of an Arithmetic Logic Unit operation:
Negative (N), Zero (Z), Overflow (V), Carry from bit 7 (C),
and half carry from bit 3 (H). These bits of the Condition
Code Register are used as testable conditions for the condi­
tional branch instructions. Bit 4 is the interrupt mask bit (1).
The unused bits of the Condition Code Register (b6 and b7)
are ones .

15

FIGURE 14- PROGRAMMING MODEL OF
THE MICROPROCESSING UNIT

0

'::----------'' Accumulator A
0

'----------'' Accumulator B
0

~~::----------------''Program Counter
15 0

Condition Code

l.....I---L.,-1-,.J-,...a-,...l...rY Register

Carry (From Bit 7)

Overflow

Zero

L--- Negative

Interrupt

.____ _____ @ MOTOROLA Semiconductor Products Inc.
12

MPU INSTRUCTION SET

The MC6800 instructions are described in detail in the
M6800 Programming Manual. This Section will provide a
brief introduction and discuss their use in developing
MC6800 control programs. The MC6800 has a set of 72 dif­
ferent executable source instructions. Included are binary
and decimal arithmetic, logical, shift, rotate, load, store,
conditional or unconditional branch, interrupt and stack
manipulation instructions.

Each of the 72 executable instructions of the source
language assembles into 1 to 3 bytes of machine code. The
number of bytes depends on the particular instruction and
on the addressing mode. (The addressing modes which are
available for use with the various executive instructions are
discussed later.)

The coding of the first (or only) byte corresponding to an
executable instruction is sufficient to identify the instruction
and the addressing mode. The hexadecimal equivalents of
the binary codes, which result from the translation of the 72
instructions in all valid modes of addressing, are shown in
Table 1. There are 197 valid machine codes, 59 of the 256
possible codes being unassigned.

When an instruction translates into two or three bytes of
code, the second byte, or the second and third bytes con­
tain(s) an operand, an address, or information from which an
address is obtained during execution.

Microprocessor instructions are often divided into three
general classifications: (1) memory reference, so called
because they operate on specific memory locations; (2)
operating instructions that function without needing a
memory reference; (3) 1/0 instructions for transferring data
between the microprocessor and peripheral devices.

In many instances, the MC6800 performs the same opera­
tion on both its internal accumulators and the external
memory locations. In addition, the MC6800 interface
adapters (PIA and ACIA) allow the MPU to treat peripheral
devices exactly like other memory locations, hence, no 1/0
instructions as such are required. Because of these features,
other classifications are more suitable for introducing the
MC6800's instruction set: (1) Accumulator and memory
operations; (2) Program control operations; (3) Condition
Code Register operations.

TABLE 1 - HEXADECIMAL VALUES OF MACHINE CODES

00 40 NEG
01 NOP 41
02 42
03 43 COM
04 44 LSR
05 45
06 TAP 46 ROR
07 TPA 47 ASR
08 INX 48 ASL
09 DEX 49 ROL
OA CLV 4A DEC
OB SEV 48
oc CLC 4C INC
OD SEC 40 TST
OE CLI 4E
OF SEI 4F CLR
10 SBA 50 NEG
11 CBA 51
12 52
13 53 COM
14 54 LSR
15 55
16 TAB 56 ROR
17 TBA 57 ASR
18 58 ASL
19 DAA 59 ROL
1A SA DEC
18 ABA 58
1C 5C INC
10 50 TST
1E 5E
1F SF CLR
20 BRA REL 60 NEG
21 61
22 BHI REL 62
23 BLS REL 63 COM
24 BCC REL 64 LSR
25 BCS REL 65
26 BNE REL 66 ROR
27 BEQ REL 67 ASR
28 BVC REL 66 ASL
29 BVS REL 69 ROL
2A BPL REL 6A DEC
28 BMI REL 6B
2C BGE REL 6C INC
20 BLT REL 60 TST
2E BGT REL 6E JMP
2F BLE REL 6F CLR
30 TSX 70 NEG
31 INS 71
32 PUL A 72
33 PUL B 73 COM
34 DES 74 LSR
35 TXS 75
36 PSH A 76 ROR
37 PSH B 77 ASR
38 78 ASL
39 RTS 79 ROL
3A 7A DEC
3B RTI 78
3C 7C INC
30 70 TST
3E WAI 7E JMP
3F SWI 7F CLR

'-----®

A 80 SUB A
81 CMP A
82 sse A

A 83
A 84 AND A

85 BIT A
A 86 LOA A
A 87
A 88 EOR A
A 89 ADC A
A 8A ORA A

88 ADD A
A ac CPX A
A 80 BSR

8E LOS
A 8F
B 90 SUB A

91 CMP A
92 SBC A

B 93
B 94 AND A

95 BIT A
B 96 LDA A
B 97 S"7"A A
B 98 EOR A
B 99 ADC A
B 9A ORA A

98 ADD A
B 9C CPX
8 90

9E LOS
B 9F STS

INO AO SUB A
A1 CMP A
A2 sse A

INO A3
IND A4 AND A

A5 BIT A
INO A6 LOA A
INO A? STA A
INO A8 EOR A
INO A9 ADC A
INO AA ORA A

AB ADD A
IND AC CPX
INO AD JSR
INO AE LOS
INO AF STS
EXT BO SUB A

81 CMP A
B2 sse A

EXT 83
EXT 84 AND A

B5 BIT A
EXT 86 LOA A
EXT 87 STA A
EXT B8 EOR A
EXT 89 ADC A
EXT BA ORA A

BB ADD A
EXT BC CPX
EXT BD JSR
EXT BE LDS
EXT BF STS

IMM co SUB
IMM C1 CMP
IMM C2 sse

C3
IMM C4 AND
IMM C5 BIT
IMM C6 LOA

C7
IMM C8 EOR
IMM C9 ADC
IMM CA. ORA
IMM CB ADD
IMM cc
REL I CD
IMM CE LOX

DIR ! g6 SUB
OIR 01 CMP
DIR 02 sse

03
DIR 04 AND
DIR 05 BIT
DIR 06 LOA
OIR 07 STA
DIR 08 EOR
DIR 09 ADC
DIR DA ORA
DIR DB ADD
DIR DC

DO
DIR DE LOX
DIR OF STX
INO EO SUB
INO E1 CMP
INO E2 SBC

E3
IND E4 AND
IND E5 BIT
INO E6 LOA
INO E7 STA
INO E8 EOR
INO E9 ADC
INO EA ORA
INO EB ADD
INO EC
IND ED
IND EE LOX
INO EF STX
EXT FO SUB
EXT F1 CMP
EXT F2 sse

F3
EXT F4 AND
EXT F5 BIT
EXT F6 LOA
EXT F7 STA
EXT F8 EOR
EXT F9 AOC
EXT FA ORA
EXT FB ADD
EXT FC
EXT FO
EXT FE LOX
EXT FF STX

B IMM
B IMM
B IMM

8 IMM
8 IM\1
8 IMM

B IMM
B IMM
B IMM
B IMM

IMM

B DIR
B OIR
B OIR

B DIR
B DIR
B DIR
B DIR
B DIR
B DIR
B DIR
B DIR

DIR
DIR

B IND
B INO
B IND

B INO
B IND
B IND
B INO
B IND
B INO
B INO
B INO

IND
INO

B EXT
B EXT
B EXT

B EXT
B EXT
B EXT
B EXT
B EXT
B EXT
B EXT
B EXT

EXT
EXT

Notes: t Addressing Modes:

A = Accumulator A
B = Accumulator B
REL = Relative
IND = Indexed
IMM = Immediate
DIR = Direct

2. Unassigned code indicated by 1 1 * 11
•

MOTOROLA Semiconductor Products Inc.
13

OPERATIONS

Add

Add Acmltrs

Add w1th Carry

And

Bit Test

Clear

Compare

Compare Acmltrs
Complement, l's

Complement, 2's

(Negate!

Decimal Adjust, A

Decrement

Exclusive OR

Increment

Load Acmltr

Or, Inclusive

Push Data

Pull Data

Rotate Left

Rotate Right

Shift Left, Arithmetic

Shift Right, ArithmetiC

Shift Right, Logic

Store Acmitr.

Subtract

Subtract Acm!trs.
Subtr. with Carry

Transfer Acmftrs

Test, Zero 01 Mmus

LEGEND:

OP Operatign Code (Hexadecimal);
Number of MPU Cycles;

if- Number of Program Bytes;
+ Ar1thmetic Plus;

Arithmetic Minus;
Boolean AND;

MNEMONIC

ADDA
ADDB
ABA

ADCA
AOCB
ANOA
ANDB
BIT A
BITS
CLR

CLRA
CLRB
CMPA
CMPB
CBA
COM

COMA
COMB
NEG

NEGA
NEGB
DAA

DEC
OECA
OECB
EORA
EORB
INC

INCA
I NCB
LDAA
LDAB

DRAA
DRAB
PSHA
PSHB
PULA
PULB
ROL

ROLA
RO LB
ROR

RORA
RORB
ASL

ASLA
ASLB
ASR

ASRA
ASRB
LSR

LSRA
LSRB
STAA
STAB i
SUBA I
SUBS
SBA I

SBCA
SBCB

TAB
TBA
TST

TSTA
TSTB

TABLE 2- ACCUMULATOR AND MEMORY OPERATIONS

IMMED

OP - =
88 2 2
CB 2 2

89 2 2
C9 2 2
B4 2 2
C4 2 2
85 2 2
C5 2 2

Bl 2 2
C1 2 2

88 2 2
CB 2 2

86 2 2
C6 2 2

BA 2 2
CA 2 2

' I

80 2 2
co 2 2

82 2 2
C2 2 2

ADDRESSING MODES

DIRECT INDEX EXTND

OP - = OP - = OP

9B 3 2 AB 5 2 BB
DB 3 2 EB 5 2 FB

99 3 2 A9 5 2 B9
09 3 2 E9 5 2 f9
94 3 2 A4 5 2 84
04 3 2 E4 5 2 f4
95 3 2 A5 5 2 85
05 3 2 E5 5 2 f5

6f 7 2 7F

91 3 2 AI 5 2 Bl
01 3 2 El 5 2 Fl

63 7 2 73

60 7 2 70

6A 7 2 7A

9B 3 2 AB 5 2 BB
DB 3 2 EB 5 2 FB

6C 7 2 7C

96 3 2 AS 5 2 B6
06 3 2 E6 5 2 f6

9A 3 2 AA 5 2 BA
OA 3 2 EA 5 2 FA

69 7 2 79

66 7 2 76

68 7 z 78

6/ 7 2 77

64 7 2 74

97 4 2 A7 6 2 Bl
07 4 2 E7 6 2 F7
90 3 2 AO 5 2 BO
00 3 2 EO 5 2 FO

92 3 2 A2 5 2 82
02 3 2 E2 5 2 f2

60 7 2 70

CONDITION CODE SYMBOLS:

Half-carry from bit 3;
Interrupt mask
Negative {sign bit)
Zero (byte!

-
4
4

4
4
4
4
4
4
6

4
4

6

6

6

4
4
6

4
4

4
4

6

6

6

6

6

5
5
4
4

4
4

6

=
3

3

3
3
3
3
3
3
3

3
3

3

3

3

3
3
3

3
3

3
3

3

3

3

3

3

3
3
3
3

3
3

3

BOOLEAN/ARITHMETIC OPERATION COND CODE REG

IMPLIED (All register labels 5 4 3 2 1 D

OP - = refer to contents) H I N z v c

A+ M ~A I •) t ! I
8 + M -• B 1 • t I l

1 B 2 I A+B_..A I • t I I
A+M+C -•A t . I t 1 !
B+M+C---+B I • I t l I
A· M -•A • • I t R •
8 • M -. B • • I I R •
A·M • • I l R •
B·M •• t I R •
oo~ M •• R s R R

4F 2 1 00 -•A •• R s R R
5F 2 1 00 --• B •• R s ~~~ A-M • • I t . ; .

B-M • • l 111 ,, 2 1 A- B • • ! : Iii,
M~M • • I R s '

43 2 1 A-•A .:. ; R s
53 2 1 s~B 1 ••• R s !

00- M ~ M • 'e I~ ;Q) <V
40 2 1 00- A ~A ·!· :(1)(2)
50 2 I 00- B ~ B 0 0 I IQ) (2)
19 2 1 Converts Binary Add. of B CO Charrw:~r> 0 • ! 1 I(J)

into BCD Format
M -I ~M • • 1 4 •

4A 2 1 A -1-•A • • 1 1 4 •
5A 2 1 B- 1 -· B • • 1 t 4 •

Ai2:JM-A • • 1 I R •
B®r.o ·6 • • l I R •
M- 1 ·M • • l I®•

4C 2 1 A • I -·A • • ! I®•
5C 2 1

I
B' 1 • 3 • • l l@o
:~ ~ ·A • • l I R •

: ~· ., B •• I I R •
A+M 4 A •• I I R • I
3 +M~B •• I I R •

36 4 1 A ~ Msp. SP - I ~ SP •• • • • •
37 4 1 B -• Msp, SP - 1 ~ SP •• • • • •
31 4 1 SP+ I ~SP,Msp~A • • • • • •
33 4 1 SP + 1 -SP, Msp~ B • • •• • •

n • • I t@l
49 2 I LO - 11111111~ • • I 1®1
59 2 1 c b7 bO • • 1 ! i' I

n • • I :®t
46 2 1 LO - ,,,,,,,,w • • I l@l
56 2 1 c b) bO • • t 1 i' l

;} - • • t®t
48 2 1 0 - 111111111 0 • • 1 l Fs' I
58 2 1 c b7 bO • • tCIDI

:}9;"-:-' 1b6- ~ •• !@I
47 2 1 • • I t'G':
57 2 1 • • l)~I

n - • • R ICIDt
44 2 1 0 --I 11111111 - 0 o o R I Fs' I
54 2 1 b7 bO c •• R t ~ t

A~M ••) ! R o
B-M •• t) R •
A-M-A • •))) t
B-M-B • • t) ! l

10 2 1 A-B-A • • t) t t
A-M-C~A • •) t l I
B-M-C-B • • I t I)

16 2 1 A~s • •)) R •
17 2 1 B~A • • l I R •

M- 00 • • I : R R
40 2 1 A- 00 • •) ! R R
50 2 1 B- 00 • • I t R R

H I N z v c

CONDITION CODE REGISTER NOTES:
(Bit set if test is true and cleared otherwise)

(Bit VI
(Bit C)
(Bit C)

Test: Result= 10000000?
Test: Result = 00000000?
Test: Decimal value of most significant BCD
Character greater than nine?

Msp Contents of memory location pointed to be Stack Pointer;

N
z
v
c
R
s
t

Overflow, 2's complement
Carry from bit 7 I Not cleared if previously set. I

+ Boolean Inclusive OR;
G Boolean Exclusive OR;
M Complement of M;

Transfer Into;
Bit= Zero;

00 Byte = Zero:

•

Reset Always
Set Always
Test and set it true, cleared otherwise
Not Affected

4 !Bit VI
!Bit VI
(Bit VI

Test: Operand= 10000000 prior to execution?
Test: 0 perand = 01111111 prior to execution?
Test: Set equal to result of N®C after shift has occurred.

Note- Accumulator addressing mode instructions are included in tho column for IMPLIED addressing

MOTOROLA Semiconductor Products Inc.
14

~ c """" = ~
J " " ' "

N!I~6BQO
' '

PROGRAM CONTROL OPERATIONS

Program Control operation can be subdivided into two
categories: {1) Index Register/Stack Pointer instructions; {2)
Jump and Branch operations.

Index Register/Stack Pointer Operations
The instructions for direct operation on the MPU's Index

Register and Stack Pointer are summarized in Table 3.
Decrement {DEX, DES), increment (INX, INS), load (LDX,
LDS), and store (STX, STS) instructions are provided for
both. The Compare instruction, CPX, can be used to com­
pare the Index Register to a 16-bit value and update the Con­
dition Code Register accordingly.

The TSX instruction causes the Index Register to be load­
ed with the address of the last data byte put onto the
"stack." The TXS instruction loads the Stack Pointer with a
value equal to one less than the current contents of the Index
Register. This causes the next byte to be pulled from the
"stack" to come from the location indicated by the Index
Register. The utility of these two instructions can be clarified
by describing the "stack" concept relative to the M6800
system.

The "stack" can be thought of as a sequential list of data
stored in the MPU's read/write memory. The Stack Pointer
contains a 16-bit memory address that is used to access the
list from one end on a last-in-first-out {LIFO) basis in contrast
to the random access mode used by the MPU's other ad­
dressing modes.

The MC6800 instruction set and interrupt structure allow
extensive use of the stack concept for efficient handling of
data movement, subroutines and interrupts. The instructions
can be used to establish one or more "stacks" anywhere in
read/write memory. Stack length is limited only by the
amount of memory that is made available.

Operation of the Stack Pointer with the Push and Pull in­
structions is illustrated in Figures 15 and 16. The Push in­
struction (PSHA) causes the contents of the indicated ac­
cumulator (A in this example) to be stored in memory at the
location indicated by the Stack Pointer. The Stack Pointer is
automatically decremented by one following the storage
operation and is "pointing" to the next empty stack location.
The Pull instruction {PULA or PULB) causes the last byte
stacked to be loaded into the appropriate accumulator. The

Stack Pointer is automatically incremented by one just prior
to the data transfer so that it will point to the last byte stack­
ed rather than the next empty location. Note that the PULL
instruction does not "remove" the data from memory; in the
example, 1 A is still in location (m + 1) following execution of
PULA. A subsequent PUSH instruction would overwrite that
location with the new "pushed" data.

Execution of the Branch to Subroutine (BSR) and Jump to
Subroutine (JSR) instructions cause a return address to be
saved on the stack as shown in Figures 18 through 20. The
stack is decremented after each byte of the return address is
pushed onto the stack. For both of these instructions, the
return address is the memory location following the bytes of
code that correspond to the BSR and JSR instruction. The
code required for BSR or JSR may be either two or three
bytes, depending on whether the JSR is in the indexed (two
bytes) or the extended {three bytes) addressing mode.
Before it is stacked, the Program Counter is automatically in­
cremented the correct number of times to be pointing at the
location of the next instruction. The Return from Subroutine
Instruction, RTS, causes the return address to be retrieved
and loaded into the Program Counter as shown in Figure 21.

There are several operations that cause the status of the
MPU to be saved on the stack. The Software Interrupt (SWI)
and Wait for Interrupt (WAll instructions as well as the
maskable (IRQ) and non-maskable {NMI) hardware inter­
rupts all cause the MPU's internal registers {except for the
Stack Pointer itself) to be stacked as shown in Figure 23.
M PU status is restored by the Return from Interrupt, RTI, as
shown in Figure 22.

Jump and Branch Operation
The Jump and Branch instructions are summarized in

Table 4. These instructions are used to control the transfer or
operation from one point to another in the control program.

The No Operation instruction, NOP, while included here,
is a jump operation in a very limited sense. Its only effect is to
increment the Program Counter by one. It is useful during
program development as a "stand-in" for some other in­
struction that is to be determined during debug. It is also us­
ed for equalizing the execution time through alternate paths
in a control program.

TABLE 3 - INDEX REGISTER AND STACK POINTER INSTRUCTIONS

IMMED DIRECT INDEX EXTNO

POINTER OPERATIONS MNEMONIC OP - OP - :! OP - :! OP

r Compare Index Reg CPX 8C 3 3 9C 4 2 AC 6 2 8C

Decrement Index Reg DEX
1 Decrement Stack Pntr DES

Increment Index Reg INX
Increment Stack Pntr INS
Load Index Reg LOX CE 3 3 DE 4 2 EE 6 2 FE

Load Stack Pntr LOS 8E 3 3 9E 4 2 AE 6 2 BE

Store Index Reg STX OF 5 2 EF 7 2 FF

Store Stack Pntr STS 9F 5 2 AF 7 2 · BF

lndx Reg~ Stack Pntr TXS

I Stack Pntr ~ lndx Reg TSX

G) (B t N) Test: Sign bit of most significant (MS) byte of result= P

@ (B tV) Test: 2's complement overflow from subtraction of ms bytes>

@ (B t N) Test: Result less than zero? (Bit 15 = 1)

-
5

5
5
6
6

IMPLIED

= OP - = BOOLEAN/ARITHMETIC OPERATION

3 XH- M, XL- (M + 1)

09 4 I X-1~X

34 4 1 SP- 1 ~ SP

08 4 1 x + 1 ~x

31 4 1 SP + 1 ~ SP

3 M ~ XH. (M + 1) ~XL

3 I
M~SPH. (M+ l)~SPL

3 XH~M. XL ~(M + 1)

3 SPH~M.SPL ~(M+1)

35 4 1 X- 1 ~ SP

30 4 1 SP + 1 ~X

~___ _____ @ MOTOROLA Semiconductor Products Inc.
15

COND CODE REG

5 4 3 2 1 0

H I N Z v c

• • CD 10•
• • • I • • .I. • • • •
• • • ! • •
• • • • • •
• • @! R •
• • @! R •:
• • @! R .: I • • @! R •r
• • • • • •t
• • • • • •i

m- 2

m- 1

SP m

{
m + 1

Previously
Stacked m + 2

Data

m + 3

PC-

m-2

m- 1

sp-----... m

Previously
Stacked

Data {:: ~
m + 3

FIGURE 15 - STACK OPERATION, PUSH INSTRUCTION

MPU MPU

/1
ACCA ~ ACCA [ill Y-

r--------- .-----------
m- 2

7F

"' " CD

~
"' 0

SP-m-

New Data

{

m

m ++

1

~ m F3

1 7F

63

FD

3C

(a) Before PSHA

Previously
Stacked

Data
2

m+ 3

PC-

FIGURE 16 - STACK OPERATION, PULL INSTRUCTION
MPU

ACCA

1A

3C

D5

EC --- -

m-

m-

SP- m+

Previously
Stacked

Data
m+

{

m +

2

1

m

1

2

3

63

FD

3C

PSHA

Next I nstr.

-~---'

(b) After PSHA

MPU

ACCA ~

1A

3C

D5

EC
!__----

PC- Next lnstr.

(a) Before PULA (b) After PULA

~

<

'------@ MOTOROLA Semiconductor Products Inc.
16

'-

l

MC6800

TABLE 4- JUMP AND BRANCH INSTRUCTIONS
COND CODE REG

RELATIVE INDEX EXTND IMPLIED 5 4 3 2 1 0

OPERATIONS MNEMONIC OP - .u. .,. OP - # OP - # OP - # BRANCH TEST H I N z v c
Branch Always BRA 20 4 ? None • • • • • •
Branch If Carry Clear BCC 24 4 2 C•O • • • • • •
Branch If Carry Set BCS 25 4 2 c; 1 • • • • • •
Branch If • Zero BEQ 27 4 2 Z• 1 • • • • • •
Branch If;;, Zero BGE 2C 4 2 N 0V•O • • • • • •
Branch If> Zero BGT 2E 4 2 Z+(N0V)•O • • • • • •
Branch If Higher BHI 22 4 2 c +J:; 0 • • • • • •
Branch If <(Zero BLE 2F 4 2 Z+ (N 0 V)• 1 • • • • • •
Branch If Lower Or Same BLS 23 4 2 C+Z•1 • • • • • •
Branch If <Zero BLT 2D 4 2 N 0 V• 1 . , • • • • •
Branch If Minus BMI 2B 4 2 N • 1 • • • • • •
Branch If Not Equal Zero BNE 26 4 2 Z•O ., • • • • •
Branch If Overflow Clear BVC 28 4 2 V•O • • • • • •
Branch If Overflow Set BVS 29 4 2 V•1 • • • • • •
Branch If Plus BPL 2A 4 2 N•O • • • • • •
Branch To Subroutine BSR BD B 2

} • • • • • •
Jump JMP 6E 4 2 7E 3 3 See Special Operat:ons • • • • • •
Jump To Subroutine JSR AD B 2 BD 9 3 • • • • • •
No Operation NOP 01 2 1 Advances Prog. Cntr. Only • • • • • •
Return From Interrupt RTI 3B 10 1 --CD--
Return From Subroutine RTS 39 5 1 I ·r·)r·r·t·t· Software Interrupt SWI 3F 12 1 See Snecial Operations • • • • • •
Wait for Interrupt• WAI 3E 9 1) • ® •••• . WAI puts Address Bus, RfW, and Data Bus m the three-state mode wh1le VMA IS held low .

(j) (All) Load Condition Code Register from Stack. (See Special Operations)

@ (Bit 1) Set when interrupt occurs. If previously set, a Non-Mask able Interrupt

is required to exit the wait state.

Execution of the Jump Instruction, JMP, and Branch
Always, BRA, affects program flow as shown in Figure 17.
When the MPU encounters the Jump (Indexed) instruction,
it adds the offset to the value in the Index Register and uses
the result as the address of the next instruction to be ex­
ecuted. In the extended addressing mode, the address of the
next instruction to be executed is fetched from the two loca­
tions immediately following the JMP instruction. The Branch
Always (BRA) instruction is similar to the J M P (extended) in­
struction except that the relative addressing mode applies
and the branch is limited to the range within -125 or + 127
bytes of the branch instruction itself. The opcode for the
BRA instruction requires one less byte than JMP (extended)
but takes one more cycle to execute.

The effect on program flow for the Jump to Subroutine
(JSR) and Branch to Subroutine (BSR) is shown in Figures
18 through 20. Note that the Program Counter is properly in­
cremented to be pointing at the correct return address
before it is stacked. Operation of the Branch to Subroutine
and Jump to Subroutine (extended) instruction is similar ex­
cept for the range. The BSR instruction requires less opcode
than JSR (2 bytes versus 3 bytes) and also executes one cy-

cle faster than JSR. The Return from Subroutine, RTS, is
used as the end of a subroutine to return to the main pro­
gram as indicated in Figure 21.

The effect of executing the Software Interrupt, SWI, and
the Wait for Interrupt, WAI, and their relationship to the
hardware interrupts is shown in Figure 22. SWI causes the
MPU contents to be stacked and then fetches the starting
address of the interrupt routine from the memory locations
that respond to the addresses FFFA and FFFB. Note that as
in the case of the subroutine instructions, the Program
Counter is incremented to point at the correct return address
before being stacked. The Return from Interrupt instruction,
RTI, (Figure 22) is used at the end of an interrupt routine to
restore control to the main program. The SWI instruction is
useful for inserting break points in the control program, that
is, it can be used to stop operation and put the MPU
registers in memory where they can be examined. The WAI
instruction is used to decrease the time required to service a
hardware interrupt; it stacks the MPU contents and then
waits for the interrupt to occur, effectively removing the
stacking time from a hardware interrupt sequence.

FIGURE 17 - PROGRAM FLOW FOR JUMP AND BRANCH INSTRUCTIONS

PC Main Program Main Program PC Main Program
n 7E=JMP

n 6E=JMP n 24>= BRA
n+1 KH =Next Address

n+1 K= Offset n+1 K =Offset*
INDXD EXTND n+2 KL =Next Address

(n+2l±K X+K Next Instruction • Next Instruction
K Next Instruction

*K =Signed 7-bit value

(a) Jump (b) Branch

'-----® MOTOROLA Semiconductor Products Inc.
17

-, ~ ""'" "'- "" ;; f;; F >o. > "~-, ~'>' :: "'l ~ "J'• I'"' -,~ " ~"""" ~ 'i' v ~ -" ~'f ~ - ~ c ~ J <,'

MC~ , , ,
> '" ~ c ~ 1"< 1 - ~ ~ - -" -~ C> " "~ , - " ~ "'

FIGURE 18 - PROGRAM FLOW FOR BSR --- ---m- 2

m-1 m- 1 (n + 2)H

SP- m m (n + 2)L

m + 1 7E m + 1 7E

7A
~.___---" ---

PC- n BSR n

n + 1 ±K = Offset• n + 1

n+2 Next Main lnstr. n+2

L__---

• K =Signed 7-Bit Value
PC-..(n+2)±K 1st Subr. lnstr.

(a) Before Execution (b) After Execution

FIGURE 19 - PROGRAM FLOW FOR JSR (EXTENDED) FIGURE 20 - PROGRAM FLOW FOR JSR (INDEXED)

m- 2

m- 1

SP--...m

m + 1 7E

m + 2 7A

7D

PC-_.. n JSA ~ 80

n + 1 SH ""Subr. Addr.

n + 2 SL = Subr. Addr.

n+3 Next Main lnstr.

(a) Before Execution

--- --- ---m- 3 rn- 2 SP~m -2

sP--..m- 2 m- 1 m- 1 In+ 2)H

m- 1 In+ 3)H sp--.. m In+ 2)L

In+ 3)L m
m + 1 7E m + 1 7E

m + 1 7E 7A 7A
~.___--- ~

m + 2 7A

7C
L____--- -

PC------+- n JSR =AD JSR =AD

n + 1 K = Offset• n + 1 K =Offset

JSR
n+2 Next Main lnstr. n + 2 Next Main lnstr.

n + 1 SH = Subr. Addr.

n + 2 SL = Subr. Addr.

• K = 8-Bit Unsigned Value PC____.. X • + K
n+3 Next Mair, lnstr.

Pe--s • Contents of Index Regtster

(S formed from
SHand SL)

(b) After Execution

(a) Before Execution

MOTOROLA Semiconductor Products Inc.
18

(b) After Execution

FIGURE 21 - PROGRAM FLOW FOR RTS

- -
SP-m-2 m -2

m -1 (n + 3)H m -1

m (n + 3)L SP- m

m + 1 7E m + 1 7E

7A 7A

----- -
n JSR = BD n JSR = BD

n + 1 SH = Subr. Addr. n + 1 SH = Subr. Addr.

n + 2 SL = Subr. Addr. n+2 SL = Subr. Addr.

n + 3 Next Main lnstr. Pc-n+3 Next Main lnstr.

L____.-------- ---Last Subr. lnstr. Last Subr. I nstr.

Pc-sn RTS Sn RTS

(a) Before Execution (b) After Execution

FIGURE 22 - PROGRAM FLOW FOR RTI

,_-

SP- m -7 m -7

m -6 CCR m- 6 CCR

m- 5 ACCB m- 5 ACCB

m- 4 ACCA m -4 ACCA

m- 3 XH (Index Reg) m- 3 XH

m- 2 XL (Index Reg) m- 2 XL

m -1 PC(n+1)H m- 1 PCH

m PC(n+1)L SP-- m PCL

~ ~ -
......- ----n + 1 Next Main I nstr. PC-- n + 1 Next Main lnstr.

- L.----
.---

Sn Last Inter. I nstr. Last Subr. lnstr.

PC- RTI Sn RTI

...._. L__----

(a) Before Execution (b) After Execution

MOTOR 01. A s emi co nduct t or Produc s Inc.
19

r,_ ~ _ ~"~ ", ~ '~"' ~ :~-~i~"' ~ \:" _., ~ ,- - ~ -, ' ; - , J -?" ~ , "

MG6800 , , , , , ,
" c ~ ' ,_ ""'~ ~ " ~ -' ~ - , < ,_

n + 1
\.

FIGURE 23 - PROGRAM FLOW FOR INTERRUPTS

Wait For
Software Interrupt Interrupt

Main Program Main Program

3F = SWI 3E = WAI

Next Main lnstr. n+1 Next Main lnstr.
J

Stack MPU
Register Contents

' SWI

\.

SP --+

~

HDWR

m -7

m- 6

m- 5

m- 4

m- 3

m- 2

m -1

m

J

Hardware Interrupt or
Non·Maskable Interrupt (NMI)

Main Program

Last Prog. Byte
\. _}

YES A
?

Stack

Condition Code

Acmltr. B

Acmltr. A

Index Register (X HI

Index Register (X Ll

PC(n + 1)H

PC(n~l)L

INT ,,A Hdwr.
Int.

_ Req. r
(CCR 4) - \.

FFFA FFF8
FFFB ~ FFF9

Interrupt Memory Assignment 1

FFF8 IRQ MS

FFF9 IRQ LS

FFFA SWI MS First lnstr.

FFFB SWI LS c:::> Addr. Formed

MS
By Fetching

FFFC NMI 2-Bytes From
FFFD NMI LS Per. Mem.

FFFE Reset MS Assign.

FFFF Reset LS

NOTE: MS = Most Significant Address Byte;
LS = Least Significant Address Byte;

Int.
r-N_o ___ .. .,< Mask Set?

- (CCR 4)

No

Yes

'
' Continue Matn Prog."'

n + 1 I Next Main lnstr I
I I

WAI NMI (Restart) -
r

"\ NMI
Wait Loop

J

FFFC FFFE r FFFD FFFF

l
Set Interrupt
Mask (CCR 41

+
Load Interrupt

Vector Into
Program Counter

1
r Interrupt Program '

1st Interrupt lnstr.

'------@ MOTOROLA Semiconductor Products Inc.
20

MC6800

FIGURE 24 - CONDITIONAL BRANCH INSTRUCTIONS

SMI N = 1 SEQ Z=1
SPL : N =¢ SNE Z=¢

SVC : V=¢ sec C=¢
SVS V=1 SCS C=1

SHI C+Z=¢ SLT NaJV= 1
SLS C+Z=1 SGE NE!lV=<t>

BLE Z+{N$V)=1
BGT Z+ {Ne:>V) = ¢

The conditional branch instructions, Figure 24, consists of
seven pairs of complementary instructions. They are used to
test the results of the preceding operation and either con­
tinue with the next instruction in sequence (test fails) or
cause a branch to another point in the program (test suc­
ceeds).

Four of the pairs are used for simple tests of status bits N,
Z, V, and C:

1. Branch on Minus (BMI) and Branch On Plus (BPU tests
the sign bit, N, to determine if the previous result was
negative or positive, respectively.

2. Branch On Equal (BEQ) and Branch On Not Equal
(BNE) are used to test the zero status bit, Z, to determine
whether or not the result of the previous operation was equal
to zero. These two instructions are useful following a Com­
pare (CMP) instruction to test for equality between an ac­
cumulator and the operand. They are also used following the
Bit Test (BIT) to determine whether or not the same bit posi­
tions are set in an accumulator and the operand.

3. Branch On Overflow Clear (BVC) and Branch On
Overflow Set (BVS) tests the state of the V bit to determine
if the previous operation caused an arithmetic overflow.

4. Branch On Carry Clear (BCC} and Branch On Carry Set
(BCS} tests the state of the C bit to determine if the previous
operation caused a carry to occur. BCC and BCS are useful

for testing relative magnitude when the values being tested
are regarded as unsigned binary numbers, that is, the values
are in the range 00 (lowest) to FF (highest}. BCC following a
comparison (CMP) will cause a branch if the (unsigned)
value in the accumulator is higher than or the same as the
value of the operand. Conversely, BCS will cause a branch if
the accumulator value is lower than the operand.

The fifth complementary pair, Branch On Higher (BHI) and
Branch On Lower or Same (BLS) are, in a sense, com­
plements to BCC and BCS. BHI tests for both C and Z= 0; if
used following a CMP, it will cause a branch if the value in
the accumulator is higher than the operand. Conversely,
BLS will cause a branch if the unsigned binary value in the
accumulator is lower than or the same as the operand.

The remaining two pairs are useful in testing results of
operations in which the values are regarded as signed two's
complement numbers. This differs from the unsigned binary
case in the following sense: in unsigned, the orientation is
higher or lower; in signed two's complement, the com­
parison is between larger or smaller where the range of
values is between -128 and + 127.

Branch On Less Than Zero (B L Tl and Branch On Greater
Than Or Equal Zero (B G E) test the status bits for N Ell V = 1
and NeV=O, respectively. BLT will always cause a branch
following an operation in which two negative numbers were
added. In addition, it will cause a branch following a CMP in
which the value in the accumulator was negative and the
operand was positive. BL Twill never cause a branch follow­
ing a CMP in which the accumulator value was positive and
the operand negative. BGE, the complement to BLT, will
cause.a branch following operations in which two positive
values were added or in which the result was zero.

The last pair, Branch On Less Than Or Equal Zero (BLE)
and Branch On Greater Than Zero (BGT) test the status bits
for Ze (N + Vl = 1 and Ze (N + Vl =0, respectively. The ac­
tion of BLE is identical to that for BL T except that a branch
will also occur if the result of the previous result was zero.
Conversely, BGT is similar to BGE except that no branch will
occur following a zero result.

CONDITION CODE REGISTER
OPERATIONS

The Condition Code Register (CCR) is a 6-bit register
within the MPU that is useful in controlling program flow
during system operation. The bits are defined in Figure 25.

The instructions shown in Table 5 are available to the user
for direct manipulation of the CCR.

A CLI-WAI instruction sequence operated properly, with
early MC6800 processors, only if the preceding instruction
was odd (Least Significant Bit= 1). Similarly it was advisable

to precede any SEI instruction with an odd opcode - such
as NOP. These precautions are not necessary for MC6800
processors indicating manufacture in November 1977 or
later.

Systems which require an interrupt window to be opened
under program control should use a CLI-NOP-SEI sequence
rather than CU-SEI.

.___ _____ @ MOTOROLA Semiconductor Products Inc.
21

~ ~ - r. r " r ' :l " ~• ~, "'"" "'

MC6800 " " " " "
' ~ -- "' ~ " ~ ~ ~ " ' ' ~ ~ ~ ~ . - ~ ~ ~

FIGURE 25 - CONDITION CODE REGISTER BIT DEFINITION

H N Z v c

H = Half"carry; set whenever a carry from b3 to b4 of the result is generated

by ADD, ABA, ADC; cleared if no b3 to b4 carry; not affected by other

instructions.

Interrupt Mask; set by hardware or software interrupt or SE I instruction;
cleared by CLI instruction. (Normally not used in arithmetic operations.)
Restored to a zero as a result of an RT1 instruction if 1m stored on the
stacked is low.

N = Negative; set if high order bit (b7) of result is set; cleared otherwise.

Z = Zero; set if result= 0; cleared otherwise.

V = Overlow; set if there was arithmetic overflow as a result of the operation;
cleared otherwise.

C Carry; set if there was a carry from the most significant bit (b7) of the

result; cleared otherwise.

TABLE 5 - CONDITION CODE REGISTER INSTRUCTIONS

CONO. CODE REG.

IMPLIED 5 4 3 2 1

OPERATIONS MNEMONIC OP - "" BOOLEAN OPERATION H I N z v
Clear Carry CLC oc 2 1 o~c • • • • •
Clear Interrupt Mask Cll OE 2 1 0->1 • R • • •
Clear Overflow CLV OA 2 1 o~v • • • • R

Set Carry SEC 00 2 1 1~c • • • • •
Set Interrupt Mask SEI OF 2 1 1~1 • s • • •
Set Overflow SEV OB 2 1 1-V • • • • s

0

c
R

•
•
s
•
•

Acmltr A~ CCR TAP 06 2 1 A~ CCR --CD--
•l•l•-t•l•l• CCR~Acmltr A

R = Reset

S- Set

• - Not affected

TPA 07 2 1 CCR ~A

G) (ALL) Set according to the contents of Accumulator A.

ADDRESSING MODES

The MPU operates on 8-bit binary numbers presented to it
via the Data Bus. A given number (byte) may represent
either data or an instruction to be executed, depending on
where it is encountered in the control program. The M6800
has 72 unique instructions, however, it recognizes and takes
action on 197 of the 256 possibilitis that can occur using an
8-bit word length. This larger number of instructions results
from the fact that many of the executive instructions have
more than one addressing mode.

These addressing modes refer to the manner in which the
program causes the M PU to obtain its instructions and data.
The programmer must have a method for addressing the
M PU's internal registers and all of the external memory loca­
tions.

Selection of the desired addressing mode is made by the
user as the source statements are written. Translation into

appropriate opcode then depends on the method used. If
manual translation is used, the addressing mode is inherent
in the opcode. For example, the Immediate, Direct, Indexed,
and Extended modes may all be used with the ADD instruc­
tion. The proper mode is determined by selecting (hex­
adecimal notation) 8B, 98, AB, or BB, respectively.

The source statement format includes adequate informa­
tion for the selection if an assembler program is used to
generate the opcode. For instance, the Immediate mode is
selected by the Assembler whenever it encounters the "#"
symbol in the operand field. Similarly, an "X" in the operand
field causes the Indexed mode to be selected. Only the
Relative mode applies to the branch instructions, therefore,
the mnemonic instruction itself is enough for the Assembler
to determine addressing mode.

'------@ MOTOROLA Semiconductor Products Inc.
22

~

MC6800

For the instructions that use both Direct and Extended
modes, the Assembler selects the Direct mode if the operand
value is in the range 0~255 and Extended otherwise. There
are a number of instructions for which the Extended mode is
valid but the Direct is not. For these instructions, the
Assembler automatically selects the Extended mode even if
the operand is in the 0-255 range. The addressing modes are
summarized in Figure 26.

Inherent (Includes "Accumulator Addressing" Mode)

The successive fields in a statement are normally
separated by one or more spaces. An exception to this rule
occurs for instructions that use dual addressing in the
operand field and for instructions that must distinguish be­
tween the two accumulators. In these cases, A and B are

"operands" but the space between them and the operator
may be omitted. This is commonly done, resulting in ap­
parent four character mnemonics for those instructions.

The addition instruction, ADD, provides an example of
dual addressing in the operand field:

Operator Operand Comment
ADDA MEM12 ADD CONTENTS OF MEM12 TO ACCA

or
ADDB MEM12 ADD CONTENTS OF MEM12 TO ACCB

The example used earlier for the test instruction, TST, also
applies to the accumulators and uses the "accumulator ad­
dressing mode" to designate which of the two accumulators
is being tested:

FIGURE 26 - ADDRESSING MODE SUMMARY

Direct:

Example: SUBS Z
Addr. Range= 0-255

&

(K = One-Byte Oprnd)

(K =Two-Byte Oprnd)

n DO Instruction

n + 1 Z = Oprnd Address

n+2 Next lnstr.

•
•
•

Z ~~-----K_= __ o_p_e_ra_n_d ____ _.

OR

z KH =Operand

z + 1 KL =Operand

& If Z ~ 255, Assembler Select Direct Mode
If Z >255, Extended Mode is selected

Extended: n

Example: CMPA Z n + 1

Addr. Range:

& 256-65535

(K =One-Byte Oprnd)

(K =Two-Byte Oprnd)

n+2

n+3

z

z

Z+1

FO Instruction

ZH = Oprnd Address

ZL = Oprnd Address

Next lnstr.

•
•
•

K =Operand

OR

KH =Operand

KL =Operand

Immediate: n

Example: LDAA #K n + 1
(K = One-Byte Oprnd)

n+2

(K =Two-Byte Oprnd) n
(CPX, LDX. and LDS)

n + 1

n + 2

n + 3

Relative: n

Example: BNE K n + 1

(K =Signed 7-Bit Value) n + 2

Addr. Range:
-125 to +129
Relative ton.

(n+2)±K

Instruction

K =Operand

Next lnst.

OR

Instruction

KH =Operand

K L =Operand

Next lnstr.

Instruction

±K = Brnch Offset

Next lnstr. &

•
•
•

Next lnstr. &

& If Brnch Tst False, & If Brnch Tst True.

Indexed:

Example: ADDA Z, X

Addr. Range:
0-255 Relative to
Index Register, X

(Z = 8-Bit Unsigned
Value)

n

n + 1

n+2

X+Z

Instruction

Z = Offset

Next lnstr.

•
•
•

K =Operand

'------@ MOTOROLA Semiconductor Products Inc.
23

~ - "" ' ~ "'
- ,r: '

MC6800 , "

or

- - ." 1'-'

Operator
TSTB

TSTA

Comment
TEST CONTENTS OF ACCB

TEST CONTENTS OF ACCA

A number of the instructions either alone or together with
an accumulator operand contain all of the address informa­
tion that is required, that is, "inherent" in the instruction
itself. For instance, the instruction ABA causes the MPU to
add the contents of accmulators A and B together and place
the result in accumulator A. The instruction INCB, another
example of "accumulator addressing," causes the contents
of accumulator B to be increased by one. Similarly, INX, in­
crement the Index Register, causes the contents of the Index
Register to be increased by one.

Program flow for instructions of this type is illustrated in
Figures 27 and 28. In these figures, the general case is shown
on the left and a specific example is shown on the right.
Numerical examples are in decimal notation. Instructions of
this type require only one byte of opcode. Cycle-by-cycle
operation of the inherent mode is shown in Table 6.

Immediate Addressing Mode- In the Immediate address­
ing mode, the operand is the value that is to be operated on.
For instance, the instruction

Operator
LDAA

Operand
#25

Comment
LOAD 25 INTO ACCA

causes the MPU to "immediately load accumulator A with
the value 25"; no further address reference is required. The
Immediate mode is selected by preceding the operand value
with the"#" symbol. Program flow for this addressing mode
is illustrated in Figure 29.

The operand format allows either properly defined sym­
bols or numerical values. Except for the instructions CPX,
LDX, and LDS, the operand may be any value in the range 0
to 255. Since Compare Index Register (CPX), Load Index
Register (LDX), and Load Stack Pointer (LDS), require 16-bit
values, the immediate mode for these three instructions re­
quire two-byte operands. In the Immediate addressing

FIGURE 27 - INHERENT ADDRESSING

MPU MPU

GENERAL FLOW EXAMPLE

mode, the "address" of the operand is effectively the
memory location immediately following the instruction itself.
Table 7 shows the cycle-by-cycle operation for the im­
mediate addressing mode.

Direct and Extended Addressing Modes - In the Direct
and Extended modes of addressing, the operand field of the
source statement is the address of the value that is to be
operated on. The Direct and Extended modes differ only in
the range of memory locations to which they can direct the
M PU. Direct addressing generates a single 8-bit operand
and, hence, can address only memory locations 0 through
255; a two byte operand is generated for Extended address­
ing, enabling the MPU to reach the remaining memory loca­
tions, 256 through 65535. An example of Direct addressing
and its effect on program flow is illustrated in Figure 30.

The M PU, after encountering the opcode for the instruc­
tion LDAA (Direct) at memory location 5004 (Program
Counter= 5004), looks in the next location, 5005, for the ad­
dress of the operand. It then sets the program counter equal
to the value found there (100 in the example) and fetches the
operand, in this case a value to be loaded into accumulator
A, from that location. For instructions requiring a two-byte
operand such as LDX (Load the Index Register), the operand
bytes would be retrieved from locations 100 and 101. Table 8
shows the cycle-by-cycle operation for the direct mode of
addressing.

Extended addressing, Figure 31, is similar except that a
two-byte address is obtained from locations 5007 and 5008
after the LDAB (Extended) opcode shows up in location
5006. Extended addressing can be thought of as the "stan­
dard" addressing mode, that is, it is a method of reaching
any place in memory. Direct addressing, since only one ad­
dress byte is required, provides a faster method of process­
ing data and generates fewer bytes of control code. In most
applications, the direct addressing range, memory locations
0-255, are reserved for RAM. They are used for data buffer­
ing and temporary storage of system variables, the area in
which faster addressing is of most value. Cycle-by-cycle
operation is shown in Table 9 for Extended Addressing.

FIGURE 28 - ACCUMULATOR ADDRESSING

MPU

PROGRAM
MEMORY

GENERAL FLOW

MPU

EXAMPLE

..___ _____ @ MOTOROLA Semiconductor Products Inc.
24

Relative Address Mode - In both the Direct and Extended
modes, the address obtained by the MPU is an absolute
numerical address. The Relative addressing mode, im­
plemented for the MPU's branch instructions, specifies a
memory location relative to the Program Counter's current
location. Branch instructions generate two bytes of machine
code, one for the instruction opcode and one for the
"relative" address (see Figure 32). Since it is desirable to be
able to branch in either direction, the 8-bit address byte is in­
terpreted as a signed 7-bit value; the 8th bit of the operand is
treated as a sign bit, "0" =plus and "1" =minus. The re­
maining seven bits represent the numerical value. This
results in a relative addressing range of ± 127 with respect to
the location of the branch instruction itself. However, the
branch range is computed with respect to the next instruc­
tion that would be executed if the branch conditions are not
satisfied. Since two bytes are generated, the next instruction
is located at PC+ 2. If D is defined as the address of the
branch destination, the range is then:

(PC+ 2) -127~ D~ (PC+ 2) + 127
or

PC-125~ D~ PC+ 129

that is, the destination of the branch instruction must be
within -125 to + 129 memory locations of the branch in­
struction itself. For transferring control beyond this range,

the unconditional jump (J M Pl, jump to subroutine (J S R),
and return from subroutine (RTS) are used.

In Figure 32, when the MPU encounters the opcode for
BEQ (Branch if result of last instruction was zero), it tests the
Zero bit in the Condition Code Register. If that bit is "0," in­
dicating a non-zero result, the MPU continues execution
with the next instruction (in location 5010 in Figure 32). If the
previous result was zero, the branch condition is satisfied
and the MPU adds the offset, 15 in this case, to PC+2 and
branches to location 5025 for the next instruction.

The branch instructions allow the programmer to efficient­
ly direct the MPU to one point or another in the control pro­
gram depending on the outcome of test results. Since the
control program is normally in read-only memory and cannot
be changed, the relative address used in execution of branch
instructions is a constant numerical value. Cycle-by-cycle
operation is shown in Table 10 for relative addressing.

Indexed Addressing Mode - With Indexed addressing,
the numerical address is variable and depends on the current
contents of the Index Register. A source statement such as

Operator
STAA

Operand
X

Comment
PUT A IN INDEXED LOCATION

causes the MPU to store the contents of accumulator A in

TABLE 6- INHERENT MODE CYCLE-BY-CYCLE OPERATION

Addres5 Mode
and Instructions Address Bus Data Bus

ABA DAA SEC 1 1 Op Code Address 1 Op Code
ASL DEC SEI 2

ASR INC SEV 2 1 Op Code Address+ 1 1 Op Code of Next Instruction

CBA LSR TAB
CLC NEG TAP
CLI NOP TBA
CLR ROL TPA
CLV ROR TST
COM SBA

DES 1 1 Op Code Address 1 Op Code
DEX 2 1 Op Code Address+ 1 1 Op Code of Next Instruction
INS 4
INX 3 0 Previous Register Contents 1 Irrelevant Data (Note 1)

4 0 New Register Contents 1 Irrelevant Data (Note 1)

PSH 1 1 Op Code Address 1 Op Code

2 1 Op Code Address+ 1 1 Op Code of Next Instruction
4

3 1 Stack Pointer 0 Accumulator Data

4 0 Stack Pointer- 1 1 Accumulator Data

PUL 1 1 Op Code Address 1 Op Code

2 1 Op Code Address + 1 1 Op Code of Next Instruction
4

3 0 Stack Pointer 1 Irrelevant Data (Note 1)

4 1 Stack Pointer + 1 1 Operand Data from Stack

TSX 1 1 Op Code Address 1 Op Code

2 1 Op Code Address+ 1 1 Op Code of Next Instruction
4

3 0 Stack Pointer 1 Irrelevant Data (Note 1)

4 0 New Index Register 1 Irrelevant Data (Note 1)

TXS 1 1 Op Code Address 1 Op Code

2 1 Op Code Address + 1 1 Op Code of Next Instruction
4

3 0 Index Register 1 Irrelevant Data

4 0 New Stack Pointer 1 Irrelevant Data

RTS 1 1 Op Code Address 1 Op Code

2 1 Op Code Address + 1 1 Irrelevant Data (Note 2)

5 3 0 Stack Pointer 1 Irrelevant Data (Note 1)

4 1 Stack Pointer+ 1 1 Address of Next Instruction (High
Order Byte)

5 1 Stack Pointer + 2 1 Address of Next Instruction (Low
Order Byte)

.__ _____ @ MOTOROLA Semiconductor Products Inc.
25

TABLE 6- INHERENT MODE CYCLE-BY-CYCLE OPERATION (CONTINUED)

Address Mode
and Instructions Address Bus Data Bus

WAI 1 1 Op Code Address 1 Op Code

2 1 Op Code Address + 1 1 Op Code of Next Instruction

3 1 Stack Pointer 0 Return Address (Low Order Byte)

4 1 Stack Pointer - 1 0 Return Address (High Order Byte)

9 5 1 Stack Pointer - 2 0 Index Register (Low Order Byte)

6 1 Stack Pointer- 3 0 Index Register (High Order Byte)

7 1 Stack Pointer - 4 0 Contents of Accumulator A

8 1 Stack Pointer- 5 0 Contents of Accumulator B

9 1 Stack Pointer - 6 (Note 3) 1 Contents of Cond. Code Register

RTI 1 1 Op Code Address 1 Op Code

2 1 Op Code Address+ 1 1 Irrelevant Data (Note 2)

3 0 Stack Pointer 1 Irrelevant Data (Note 1)

4 1 Stack Pointer + 1 1 Contents of Cond. Code Register from
Stack

10 5 1 Stack Pointer+ 2 1 Contents of Accumulator B from Stack

6 1 Stack Pointer+ 3 1 Contents of Accumulator A from Stack

7 1 Stack Pointer+ 4 1 Index Register from Stack (High Order
Byte)

8 1 Stack Pointer + 5 1 Index Register from Stack (Low Order
Byte)

9 1 Stack Pointer+ 6 1 Next Instruction Address from Stack
(High Order Byte)

10 1 Stack Pointer+ 7 1 Next Instruction Address from Stack
(Low Order Byte)

SWI 1 1 Op Code Address 1 .OP Code

2 1 Op Code Address + 1 1 Irrelevant Data (Note 1)

3 1 Stack Pointer 0 Return Address (Low Order Byte)

4 1 Stack Pointer 1 0 Return Address (High Order Byte)

5 1 Stack Pointer - 2 0 Index Register (Low Order Byte)

12 6 1 Stack Pointer - 3 0 Index Register (High Order Byte)

7 1 Stack Pointer- 4 0 Contents of Accumulator A

8 1 Stack Pointer - 5 0 Contents of Accumulator B

9 1 Stack Pointer- 6 0 Contents of Cond. Code Register

10 0 Stack Pointer- 7 1 Irrelevant Data (Note 1)

11 1 Vector Address FFFA (Hex) 1 Address of Subroutine (High Order
Byte)

12 1 Vector Address FFFB (Hex) 1 Address of Subroutine (Low Order
Byte)

Note 1. If device which is addressed during this cycle uses VMA, then the Data Bus will go to the high impedance three-state condition.
Depending on bus capacitance, data from the previous cycle may be retained on the Data Bus.

Note 2. Data is ignored by the MPU.
Note 3. While the MPU is waiting for the interrupt, Bus Available will go high indicating the following states of the control lines: VMA is

low; Address Bus, RIW, and Data Bus are all in the high impedance state.

the memory location specified by the contents of the Index
Register (recall that the label "X" is reserved to designate the
Index Register). Since there are instructions for manipulating
X during program execution (LOX, INX, DEC, etc.), the In­
dexed addressing mode provides a dynamic "on the fly" way
to modify program activity.

The operand field can also contain a numerical value that
will be automatically added to X during execution. This for­
mat is illustrated in Figure 33.

When the MPU encounters the LDAB (Indexed) opcode in

location 5006, it looks in the next memory location for the
value to be added to X (5 in the example) and calculates the
required address by adding 5 to the present Index Register
value of 400. In the operand format, the offset may be
represented by a label or a numerical value in the range 0-255
as in the example. In the earlier example, ST AA X, the
operand is equivalent to 0, X, that is, the 0 may be omitted
when the desired address is equal to X. Table 11 shows the
cycle-by-cycle operation for the Indexed Mode of Address­
ing.

'----® MOTOROLA Semiconductor Products Inc.
26

" ;'1 ' r j ~ 01 " ' '" C., ""'1 ~ ; "" \

: 'Mc6800 , ,
'' < ' 0 1

FIGURE 29 - IMMEDIATE ADDRESSING MODE FIGURE 30 - DIRECT ADDRESSING MODE

MPU

GENERAL FLOW

ADC
ADD
AND
BIT
CMP

CPX
LDS
LDX

ADC
ADD
AND
BIT
CMP

CPX
LOS
LOX

STA

STS
STX

Address Mode
and Instructions

EOR
LDA
ORA
sac
SUB

Address Mode
and Instructions

EOR
LDA
ORA
sse
SUB

2

3

3

4

4

5

MPU

EXAMPLE

MPU

PC I-_;_;;;:_;_;;__,

PC + 1 1-.;.;:;,.:_;,;___,

ADDR = 0 ~255

GENERAL FLOW

MPU

PC" 5004 1-...::;:;::_::_..J

5005 1-__;~--f'-......r--..1

EXAMPLE

TABLE 7- IMMEDIATE MODE CYCLE-BY-CYCLE OPERATION

Address Bus Data Bus

1 1 Op Code Address 1 Op Code

2 1 Op Code Address + 1 1 Operand Data

1 1 Op Code Address 1 Op Code

2 1 Op Code Address+ 1 1 Operand Data (High Order Byte)

3 1 Op Code Address+ 2 1 Operand Data (Low Order Byte)

TABLE 8- DIRECT MODE CYCLE-BY-CYCLE OPERATION

Address Bus Data Bus

1 1 Op Code Address 1 Op Code

2 1 Op Code Address+ 1 1 Address of Operand

3 1 Address of Operand 1 Operand Data

1 1 Op Code Address 1 Op Code

2 1 Op Code Address+ 1 1 Address of Operand

3 1 Address of Operand 1 Operand Data (High Order Byte)

4 1 Operand Address+ 1 1 Operand Data (Low Order Byte)

1 1 Op Code Address 1 Op Code

2 1 Op Code Address+ 1 1 Destination Address

3 0 Destination Address 1 Irrelevant Data (Note 1 t
4 1 Destination Address 0 Data from Accumulator

1 1 Op Code Address 1 Op Code

2 1 Op Code Address+ 1 1 Address of Operand

3 0 Address of Operand 1 Irrelevant Data (Note 1)

4 1 Address of Operand 0 Register Data (High Order Byte)

5 1 Address of Operand + 1 0 Register Data (Low Order Byte)

Note 1, If device which is address during this cycle uses VMA, then the Data Bus will go to the high impedance three-state condition,
Depending on bus capacitance, data from the previous cycle may be retained on the Data Bus,

MOTOROLA Semiconductor Products Inc.
27

Address Mode
and Instructions Cycles

STS
STX

6

JSR

9

JMP

3

ADC EOR
ADD LDA
AND ORA 4
BIT SBC
CMP SUB

CPX
LOS
LDX

5

STA A
STAB

5

ASL LSR
ASR NEG
CLR ROL
COM ROR 6
DEC TST
INC

ADDR

PC

FIGURE 31
MPU

EXTENDED ADDRESSING MODE
MPU

PC = 5006

ADDR ? 256

GENERAL FLOW EXAMPLE

TABLE 9- EXTENDED MODE CYCLE-BY-CYCLE

Cycle VMA R/W

" Line Address Bus Line

1 1 Op Code Address 1

2 1 Op Code Address + 1 1

3 1 Op Code Address + 2 1

4 0 Address of Operand 1

5 1 Address of Operand 0

6 1 Address of Operand + 1 0

1 1 Op Code Address 1

2 1 Op Code Address + 1 1

3 1 Op Code Address + 2 1

4 1 Subroutine Start mg Address 1

5 1 Stack Pointer 0

6 1 Stack Pointer- 1 0

7 0 Stack Pomter -- 2 1

8 0 Op Code Address+ 2 1

9 1 Op Code Address + 2 1

1 1 Op Code Address 1

2 1 Op Code Address+ 1 1

3 1 Op Code Address+ 2 1

1 1 Op Code Address 1

2 1 Op Code Address+ 1 1

3 1 Op Code Address+ 2 1

4 1 Address of Operand 1

1 1 Op Code Address 1

2 1 Op Code Address + 1 1

3 l Op Code Address+ 2 1

4 1 Address of Operand 1

5 1 Address of Operand+ 1 1

1 1 Op Code Address 1

2 1 Op Code Address + 1 1

3 1 Op Code Address + 2 1

4 0 Operand Destination Address 1

5 1 Operand Destination Address 0

1 1 Op Code Address 1

2 1 Op Code Address+ 1 1

3 1 Op Code Address + 2 1

4 1 Address of Operand 1

5 0 Address of Operand 1

6 1/0 Address of Operand 0
(Note

21

Data Bus

Op Code

Address of Operand (High Order Byte)

Address of Operand (Low Order Byte)

Irrelevant Data (Note 1 I

Operand Data (High Order Byte)

Operand Data (Low Order Byte)

Op Code

Address of Subroutine (High Order Byte)

Address of Subroutine (Low Order Byte)

Op Code of Next Instruction

Return Address (Low Order Byte)

Return Address (High Order Byte)

Irrelevant Data (Note 1 I

Irrelevant Data (Note 1 I

Address of Subroutine (Low Order Byte)

Op Code

Jump Address (High Order Byte)

Jump Address (Low Order Byte)

Op Code

Address of Operand (High Order Byte)

Address of Operand (Low Order Byte)

0 pera nd Data

Op Code

Address of Operand (High Order Byte)

Address of Operand (Low Order Byte)

Operand Data (High Order Byte)

Operand Data (Low Order Byte)

Op Code

Destination Address (High Order Byte)

Destination Address (Low Order Byte)

Irrelevant Data (Note 1 I

Data from Accumulator

Op Code

Address of Operand (High Order Byte)

Address of Operand (Low Order Byte)

Current Operand Data

Irrelevant Data (Note 1 I

New Operand Data (Note 21

Note 1. If device which is addressed during this cycle uses VMA, then the Data Bus will go to the high impedance three-state condition.
Depending on bus capacitance, data from the previous cycle may be retained on the Data Bus.

Note 2. For TST, VMA = 0 and Operand data does not change.

'---@ MOTOROLA Semiconductor Products Inc.
28

BCC
BCS
BEO
BGE
BGT

BSR

FIGURE 32 - RELATIVE ADDRESSING MODE

PC

PC

(PC+ 2) +(Offset) Next lnstr. PC

MPU

-----5025 Next lnstr.

._ ___ _,

FIGURE 33 - INDEXED ADDRESSING MODE

MPU

ADDR = INDX

+ 0 F FSE T 1-....;;.;..:..;.;..'---i'"

GENERAL FLOW EXAMPLE

TABLE 10- RELATIVE MODE CYCLE-BY-CYCLE OPERATION

Address Mode
and Instructions

BHI BNE
BLE BPL
BLS BRA
BLT BVC
BMI BVS

4

8

1 1

2 1

3 0

4 0

1 1

2 1

3 0

4 1

5 1

6 0

7 0

8 0

Address Bus Data Bus

Op Code Address 1 Op Code

Op Code Address + 1 1 Branch Offset

Op Code Address + 2 1 Irrelevant Data (Note 1)

Branch Address 1 Irrelevant Data (Note 1)

Op Code Address 1 Op Code

Op Code Address + 1 1 Branch Offset

Return Address of Main Program 1 Irrelevant Data (Note 1)

Stack Pointer 0 Return Address (Low Order Byte)

Stack Pointer - 1 0 Return Address (High Order Byte)

Stack Pointer- 2 1 Irrelevant Data (Note 1)

Return Address of Main Program 1 Irrelevant Data (Note 1)

Subroutine Address 1 Irrelevant Data (Note 1)

Note 1. If device which is addressed during this cycle uses VMA. then the Data Bus will go to the high impedance three-state condition.
Depending on bus capacitance, data from the previous cycle may be retained on the Data Bus.

'---® MOTOROLA Semiconductor Products Inc.
29

Address Mode
and Instructions

INDEXED

JMP

ADC EOR
ADD LOA
AND ORA
BIT SBC
CMP SUB

CPX
LOS
LOX

STA

ASL LSR
ASR NEG
CLR ROL
COM ROR
DEC TST
INC

STS
STX

JSR

1

4
2

3

4

1

2

5 3

4

5

1

2

6 3

4

5

6

1

2

6 3

4

5

6

1

2

7
3

4

5

6

7

1

2

7 3

4

5

6

7

1

2

3

8 4

5

6

7

8

TABLE 11 - INDEXED MODE CYCLE-BY-CYCLE

Address Bus Data Bus

1 Op Code Address 1 Op Code

1 Op Code Address+ 1 1 Offset

0 Index Register 1 Irrelevant Data (Note 1)

0 Index Register Plus Offset (w/o Carry) 1 Irrelevant Data (Note 1)

1 Op Code Address 1 Op Code

1 Op Code Address+ 1 1 Offset

0 Index Register 1 Irrelevant Data (Note 1)

0 Index Register Plus Offset (w/o Carry) 1 Irrelevant Data (Note 1)

1 Index Register PI us Offset 1 Operand Data

1 Op Code Address 1 Op Code

1 Op Code Address+ 1 1 Offset

0 Index Register 1 Irrelevant Data (Note 1)

0 Index Register Plus Offset (wio Carry) 1 Irrelevant Data (Note 1)

1 Index Register Plus Offset 1 Operand Data (High Order Byte)

1 Index Register Plus Offset+ 1 1 Operand Data (Low Order Byte)

1 Op Code Address 1 Op Code

1 Op Code Address+ 1 1 Offset

0 Index Register 1 Irrelevant Data (Note 1)

0 Index Register Plus Offset (w/o Carry) 1 Irrelevant Data (Note 1)

0 Index Register Plus Offset 1 Irrelevant Data (Note 1)

1 Index Register Plus Offset 0 Operand Data

1 Op Code Address 1 Op Code

1 Op Code Address + 1 1 Offset

0 Index Register 1 Irrelevant Data (Note 1)

0 Index Register Plus Offset (w/o Carry) 1 Irrelevant Data (Note 1)

1 Index Register Plus Offset 1 Current Operand Data

0 Index Register Plus Offset 1 Irrelevant Data (Note 1)

1/0 Index Register Plus Offset
(Note

0 New Operand Data (Note 2)

21

1 Op Code Address 1 Op Code

1 Op Code Address + 1 1 Offset

0 Index Register 1 Irrelevant Data (Note 1)

0 Index Register Plus Offset (w/o Carry) 1 Irrelevant Data (Note 1)

0 Index Register Plus Offset 1 Irrelevant Data (Note 1)

1 Index Register Plus Offset 0 Operand Data (High Order Byte)

1 Index Register Plus Offset+ 1 0 Operand Data (Low Order Byte)

1 Op Code Address 1 Op Code

1 Op Code Address+ 1 1 Offset

0 Index Register 1 Irrelevant Data (Note 1)

1 Stack Pointer 0 Return Address (Low Order Byte)

1 Stack Pointer - 1 0 Return Address (High Order Byte)

0 Stack Pointer - 2 1 Irrelevant Data (Note 1)

0 Index Register 1 Irrelevant Data (Note 1 I
0 Index Register Plus Offset (w/o Carry) 1 Irrelevant Data (Note 1 I

Note 1. If device which is addressed during this cycle uses VMA, then the Data Bus will go to the high impedance three-state condition.
Depending on bus capacitance, data from the previous cycle may be retained on the Data Bus.

Note 2. For TST, VMA = 0 and Operand data does not change.

MOTOROLA Semiconductor Products Inc.
30

- - "' ' ~ " '

M€6800, ,

SEATING
PLAr.E

PACKAGE DIMENSIONS

CASE 734-04
!CERDIPI

MILLIMETERS INCHES
DIM MIN MAX MIN MAX

NOTES
A 51.31 53.24 2.020 2.096 1. DIM ·A IS DATUM
B 12.70 15.49 0.500 0.610 2. POSIT!{JIMl TOLERANCE FOR LEADS:
c 4.06 5.84 0.160 0.230 Ltta J 25IO_o1DI IBll T I A IBl I
D 0.38 0.56 0.015 0.022 3. ~IS SEATING PLANE.
F 1.27 1.65 0.050 0.065 4 DIM L ~"CENTER OF LEADS WHEN
G 2.54 BSC 0.100 8SC FORM EO PARALLEL.
J 0.20 0.30 0.008 0.012 ' ' OiMcNSIONSAAND B INCLUDE

K 3.18 4.06 0.125 {) 160 : MENISCUS.

L 15.24 BSC o.6~0 esc 6 DIMENSIONING AND TD LERANCING

M so 150 so:Mo--J
PER ANSI Y145, 1973.

N 0.51 1.27 ·~~U2D ~0 !~0 J

CASE 711-03
(PLASTIC)

MILLIMETERS INCHES
DIM MIN MAX MIN MAX
A 51.69 52.45 2.035 2.065 NOTES
B 13.72 14.22 0.540 0.560 1. POSITIONAL TOLERANCE OF LEADS (0).
c 3.94 5.08 0.155 0.200 SHALL BE WITHIN 0.25 mm 10.010) AT
D 0.36 0.56 i 0.014 0.022 MAXIMUM MATERIAL CONDITION, IN
F 1.02 1.52 O.D40 0.060 RELATION TO SEATING PLANE AND
G 2.54 8SC 0.100 BSC EACH OTHER.
H 1.65 2.16 0.065 0.085 2. DIMENSION L TO CENTER 0 F LEADS
J 0.20 0.38 0.008 0 015 WHEN· FORMED PARALLEL.
K 2.92 3.43 0.115 0 135. 3. DIMENSION 8 DOES NOT INCLUDE
L 15.24 BSC 0.600 BSC MOLD FLASH
M oo 15° oo 15'
N 0.51 1.02 0.020 0.040

CASE 715-05
(CERAMIC)

MILLIMETERS INCHES
DIM MIN MAX MIN MAX
A 50.29 51.31 1.960 2]J2lf
8 14.63 15.49 0.576 0.610
& 2.79 4.32 o. 1
D 0.36 0.53 0.015 0.021
F 0.76 1.52 0.030 0.060
G 2.54 BSC 0.1 0 B C
J 0.20 0.33 0.008 0.013
K 1.54 4.57 llf1lllr 0.1 0
L 14.99 15.65 0.590 .6
M 100 1
N 1.02 1.52 0.040 0.060

NOTES
I. OIMENSION[AJISDATUM.
2. POSITIONAL TOLERANCE FOR LEADS

l<~>lo.zswo1o1 elriAel
3. ITJ IS SEATING PLANE
4. DIMENSION "L"TO CENTER OF LEADS

WHEN FORMED PARALLEL
5. DIMENSIONING AND TOLERANCIN5

PER ANSI Y14.5, 1973

Motorola reserves the right to make changes to any products herein to improve reliability, function or design. Motorola does not assume any liability arising
out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others .

...______® MOTOROLA Semiconductor Products Inc.
31

M~~ ~ , ~ ~, , ~~, , ~" ,, : , , , , ~ , ,

~ =~~ ~-:: ~ 7 o - ~ o:~ ~"'~ - ~ - x " ~ I t ~ - = : ~ -

L--- @ MOTOROLA Semiconductor Products Inc.
3501 ED BLUESTEIN BLVD., AUSTIN, TEXAS 78721 • A SUBSIDIARY OF MOTOROLA INC. -----1

